
Volume 34 (2015), Number x pp. 0–24 COMPUTER GRAPHICS forum

Real-time Rendering Techniques with Hardware Tessellation

M. Nießner1 and B. Keinert2 and M. Fisher1 and M. Stamminger2 and C. Loop3 and H. Schäfer2

1Stanford University 2University of Erlangen-Nuremberg 3Microsoft Research

Abstract
Graphics hardware has been progressively optimized to render more triangles with increasingly flexible shading.
For highly detailed geometry, interactive applications restricted themselves to performing transforms on fixed
geometry, since they could not incur the cost required to generate and transfer smooth or displaced geometry to
the GPU at render time. As a result of recent advances in graphics hardware, in particular the GPU tessellation
unit, complex geometry can now be generated on-the-fly within the GPU’s rendering pipeline. This has enabled
the generation and displacement of smooth parametric surfaces in real-time applications. However, many well-
established approaches in offline rendering are not directly transferable due to the limited tessellation patterns
or the parallel execution model of the tessellation stage. In this survey, we provide an overview of recent work
and challenges in this topic by summarizing, discussing, and comparing methods for the rendering of smooth and
highly-detailed surfaces in real-time.

1. Introduction

Graphics hardware originated with the goal of efficiently
rendering geometric surfaces. GPUs achieve high perfor-
mance by using a pipeline where large components are per-
formed independently and in parallel. While a GPU may
contain several thousand processing units [Nvi12a], the pri-
mary bottleneck has become the memory bandwidth be-
tween the processing units and the assets on the graphics
card. This is a significant problem for real-time rendering
applications, which seek to use increasingly complex and de-
tailed geometry. For sufficiently detailed meshes, the mem-
ory cost to represent and dynamically animate the mesh as
a raw collection of triangles rapidly becomes prohibitive.
Hardware tessellation was introduced along with the Xbox
360 [AB06] and the Direct3D 11 API [Mic09] specifically
to combat this problem. The main insight behind hardware
tessellation is the generation of highly-detailed geometry on-
the-fly from a coarser representation. Meshes are defined
as a set of patch primitives, rather than a purely triangle-
based representation. At run-time, patches are sent to the
GPU streaming processors, where they are refined and sub-
sequently rasterized without further memory I/O; Figure 1
shows an example rendering. Tessellations can adapt to the
underlying surface complexity by programmable assignment
of tessellation densities on a per-patch basis. Further geo-
metric detail can be added on-the-fly by displacing generated
vertices. This supports low-cost animations since only input
patch control points need to be updated while displacement
detail remains unchanged.

Hardware tessellation has attained widespread use in
computer games for displaying highly-detailed, possibly an-
imated, objects. In the animation industry, where displaced
subdivision surfaces are the typical modeling and rendering
primitive, hardware tessellation has also been identified as a
useful technique for interactive modeling and fast previews.
Much of the work presented in this report has been incorpo-
rated into OpenSubdiv [Pix12], an open source initiative

Figure 1: Rendering from Unigine Heaven Benchmark with
(right) and without (left) the use of hardware tessellation.
While the base geometry is the same for both renderings,
the highly-detailed geometry on the right is obtained by first
tessellating the coarse mesh and using a displacement map.

c⃝ 2015 The Author(s)
Computer Graphics Forum c⃝ 2015 The Eurographics Association and Blackwell Publish-
ing Ltd. Published by Blackwell Publishing, 9600 Garsington Road, Oxford OX4 2DQ,
UK and 350 Main Street, Malden, MA 02148, USA.

M. Nießner & B. Keinert & M. Fisher & M. Stamminger & C. Loop & H. Schäfer / Survey on Hardware Tessellation

driven by Pixar Animation Studios, for use in games and au-
thoring tools. In the near future, hardware tessellation will
also be available on mobile devices [Nvi13, Qua13], open-
ing the door for new applications in mobile graphics.

Although tessellation is a fundamental and well-
researched problem in computer graphics, the availability
of fast hardware tessellation has inspired researchers to de-
velop techniques specifically crafted for hardware tessella-
tion. This includes higher-order surface rendering methods
that focus on different patch-based representations for the
tessellator. Significant effort has been devoted to both ac-
curately and approximately rendering subdivision surfaces.
Hardware tessellation is also ideally suited for displace-
ment mapping, where high-frequency geometric detail is ef-
ficiently encoded as image data and applied as surface off-
sets at run-time. Several approaches for incorporating such
high-frequency details on top of smooth surfaces have been
developed including methods for data storage, displacement
evaluation, and smooth level-of-detail schemes. Additional
research focuses on improving performance by avoiding the
rendering of hidden patches; i.e., back-patch and occlusion
culling. Further techniques address the handling of patch-
based physics interactions such as collision detection for
real-time rendering.

In this survey, we contribute a summary of such methods
that are specifically designed for the GPU hardware tessel-
lator and outline their contributions. In addition, we analyze
and compare these approaches with respect to their usability
and practicality for different scenarios. Note that this survey
is the extended journal version of [SNK∗14].

The techniques to be covered involve solutions for

• smooth surface rendering,
• low-cost animations and surface updates,
• adaptive level-of-detail,
• high-frequency detail; i.e., displacements,
• compact, consistent, and efficient texture storage,
• dynamic memory management for textures,
• fine-scale mesh deformations,
• culling techniques for faster rendering,
• tessellation-based collision detection.

Prior Hardware Tessellation Work Dynamic CPU-based
tessellation methods are difficult to apply to real-time ren-
dering, as the tessellated meshes must be transferred to the
GPU continuously. As GPUs became more programmable,
tessellation started being performed directly on the GPU,
avoiding costly CPU-GPU data transfers. Vertex shaders
made it possible to reposition vertices, so that the evalua-
tion of vertex positions could be moved to the GPU, as long
as a direct evaluation of the surface at a particular parameter
position is possible. Geometry shaders can perform simple
tessellation; however, they usually slow down the pipeline
significantly, particularly if a single shader outputs a large
number of triangles.

Boubekeur et al. [BS05,BS08] proposed the use of instan-
tiation for tessellation. In their method, simple triangles are
tessellated according to a set of tessellation factors, and are
kept in GPU memory as so-called tessellation patterns. The
tessellation patterns are then rendered using instantiation and
applied to the patches of the base mesh. The requirement to
keep patterns for all used tessellation factors results in a lim-
ited number of tessellation levels.

Later, methods to adaptively generate tessellation using
GPGPU methods were presented. The hierarchical subdivi-
sion process is typically mapped to a parallel breadth-first
traversal that successively generates smaller patches until
they are considered to be fine enough [EML09, PEO09].
Schwarz et al. [SS09] parallelize the process patch-wise us-
ing a single thread per patch. This allowed them to use more
efficient evaluation methods based on finite differences, but
parallelization could only be exploited if a large number of
single patches were subdivided and the subdivision levels
did not vary largely. Other GPGPU-based approaches con-
sider contour and silhouette information to perform adap-
tive mesh refinement while avoiding tessellation disparities
[BA08], [FFB∗09].

2. GPU Hardware Tessellation

2.1. Graphics Architectures

Modern GPUs are composed of several streaming multipro-
cessors (SMs) each of which is a vector processing unit.
SMs process data chunks in parallel in a single-instruction-
multiple-data (SIMD) fashion. The specific implementation
of this kind of architecture is vendor-dependent. For exam-
ple, NVIDIAs Kepler GK110 architecture [Nvi12b] consists
of 15 streaming multiprocessors of which each unit features
192 single-precision cores resulting in a total number of
2880 cores. In this architecture, threads are dispatched by
the streaming multiprocessors’ schedulers in groups of 32
parallel threads called warps.

In contrast to conventional CPUs, GPUs spend more die
area on computational units rather than on caches. While
there is a small amount of shared memory available per SM
(64 KB for the GK110) which can be used as L1 cache, most
data must be obtained from global GPU memory. Access to
global memory is costly, as it introduces high latency. Typi-
cally, latency is partially hidden by running a sufficient num-
ber of threads simultaneously and issuing computational in-
structions without requiring any memory accesses.

2.2. Graphics Pipeline and Hardware Tessellation

The typical graphics pipeline on current GPUs consists of
five programmable shader stages (see Figure 2). GPUs can
be programmed for rendering using the OpenGL or Di-
rect3D API. Hardware tessellation has been accessible since
Direct3D 11 [Mic09] and OpenGL Version 4.0 [SA12]. In
the following, we will use the Direct3D nomenclature.

c⃝ 2015 The Author(s)
c⃝ 2015 The Eurographics Association and Blackwell Publishing Ltd.

M. Nießner & B. Keinert & M. Fisher & M. Stamminger & C. Loop & H. Schäfer / Survey on Hardware Tessellation

Vertex Shader Hull Shader Tessellator Domain Shader Geometry Shader Pixel Shader

Per input vertex Per patch control

 point

Set domain loca ons

and topology

Per domain loca Per (generated)

triangle

Per fragment

programmable programmable programmable programmable programmable

Figure 2: Graphics pipeline according to Direct3D 11 nomenclature involving programmable shader and configurable hard-
ware stages. For simplicity, the fixed-function stages input assembly, rasterization and output merger are omitted.

Highly-tessellated meshes result in large memory foot-
prints in GPU memory and are costly to render. In contrast,
hardware tessellation allows for more output polygons since
global memory access is only required for a sparse set of in-
put control points. We benchmark this by generating 2 mil-
lion output polygons on a planar grid using an NVIDIA GTX
780 graphics card. While conventional rendering using in-
dex and vertex buffers takes about 1.5 ms, using hardware
tessellation takes only 0.25 ms; i.e., more efficient by a fac-
tor of ∼ 6. However, enabling hardware tessellation without
further tessellation of input patches is ineffective. That is,
rendering the 2 million triangles with the tessellation unit
and treating every triangle as a separate patch primitive with
a tessellation factor of 1 is 5 times slower. Therefore, hard-
ware tessellation should only be used where required; i.e.,
when the application necessitates further patch tessellation.
Hardware tessellation elevates patch primitives to first class
objects in the graphics pipeline. These patches are each de-
fined by a set of control points, and processed in parallel by
the GPU. The tessellation unit generates parameter sample
values within corresponding patch domains where patches
are evaluated. Currently, triangular, quadrilateral, and isoline
domains are supported. Based on the tessellation configu-
ration, patches are evaluated at the sample locations in or-
der to generate an output stream composed of triangles. The
key advantage is that these polygons are directly processed
by the GPU streaming processors without involving further
global memory access needed for vertex geometry data, thus
minimizing memory I/O. This enables high-performance,
dynamic patch tessellation.

Hardware tessellation introduces three new pipeline
stages between vertex and geometry shading (see Figure 2):
the hull shader stage, the tessellator stage and the domain
shader stage. The hull shader stage is divided into two log-
ical parts: a per-patch constant function and the actual hull
shader program. The per-patch constant function is executed
once per input patch and is used to determine the patch tes-
sellation density. As such, per-patch tessellation factors are
computed and sent to the fixed-function tessellator stage in
order to specify the amount of generated domain sample
points. For tri- and quad-domains there are edge (3 for tris,
4 for quads) and interior (1 for tris, 2 for quads) tessellation
factors. The isoline domain is only controlled by two edge
tessellation factors that determine the line density and the
line detail. Aside from integer tessellation factors, fractional
tessellation factors are also available, enabling smooth level-
of-detail transitions. The hull shader program is executed for

every patch control point. While one thread processes a sin-
gle (output) control point, all patch input point data is shared
among hull shader programs of the same patch. Currently,
the number of control points is limited to 32 per patch.

The hull shader stage is followed by the fixed-function
tessellator, generating sample points and topology for a
given patch domain based on input tessellation factors. Ex-
amples of resulting tessellation patterns are shown in Figure
3, including tri- and quad-domains, as well as integer and
fractional tessellation factors.

The last stage of the tessellation pipeline is the pro-
grammable domain shader stage where a shader program is
invoked for each sample location. The input for this stage
is composed of the hull shader output (i.e., tessellation fac-
tors, control points) and domain sample parameters. These
are either barycentric coordinate triples uvw (tri-domain), or
two-dimensional uv coordinates (quad and isoline domains).
Based on the input, patches are evaluated, and an output
vertex is generated for every domain sample. In addition,
per-vertex attributes such as texture coordinates and surfaces
normals must be computed and passed along with the posi-

5

2

2

5.0

5.4

6.6

4

4

6

Figure 3: Generated tessellation patterns of triangle and
quad patch domains for different tessellation factors. Left:
patches are uniformly tessellated in the interior (white) and
support arbitrary tess factors on the edges resulting in tran-
sitional triangulation (colored) for watertight rendering of
adjacent patches with different interior factors. Right: frac-
tional tessellation enables smooth transitions between inte-
ger levels (fractional triangles red).

c⃝ 2015 The Author(s)
c⃝ 2015 The Eurographics Association and Blackwell Publishing Ltd.

M. Nießner & B. Keinert & M. Fisher & M. Stamminger & C. Loop & H. Schäfer / Survey on Hardware Tessellation

tions of emitted vertices. These vertices are then triangulated
using the topology generated by the fixed function tessella-
tor and processed by the remaining stages of the graphics
pipeline.

3. Higher-Order Surface Rendering

One of the main purposes of hardware tessellation is to sup-
port higher-order surface primitives, particularly paramet-
ric patches. A parametric patch is a mapping from a unit
square or triangle (parameter) domain into 3D space. The
precise nature of this mapping is specified by the program-
mer, both in terms of the assigned meaning of the input data,
and the evaluation procedures executed by the hull and do-
main shader programs.

3.1. Bézier Patches

We start with a tensor product bi-cubic Bézier patch, written

P(u,v) =
3

∑
i=0

3

∑
j=0

bi, jB3
i (u)B

3
j(v), (1)

where u,v are the coordinates of a point in a unit square
domain [0,1]× [0,1], bi, j are 16 three-dimensional control
points that determine the shape of the patch, and B3

k(t) are
Bernstein polynomials that are defined as

Bd
k (t) =

(
d
k

)
(1− t)d−ktk. (2)

The 16 patch control points are transmitted to the GPU in
a vertex buffer (either contiguously, or referenced by an in-
dex buffer). A hull shader program is executed once for each
output vertex (in parallel).

3.1.1. Crack Avoidance

Bézier patches have the property that the 4 patch control
points along the shared edges between pairs of patches must
be identical to maintain a continuous, C0 surface. In order
to avoid cracks in a rendered surface, adjacent patches must
be C0. Furthermore, the tessellation factor must be assigned
identically to the shared edge between a pair of adjacent
patches; otherwise, the tessellation unit may not sample the
shared patch boundary at corresponding parameter values
of adjacent patches, leading to cracks. Sharing control point
data and assigning identical tessellation factors along shared
edges is necessary to avoid cracks, but it is not sufficient.
Additionally, the domain shader program must take into ac-
count the different ordering of the control points with respect
to the two patches sharing an edge. If it does not, then dif-
ferent numerical roundings may accumulate sufficiently to
cause output vertices to project to different pixels, result-
ing in visible cracks between patches. The degree to which
this matters is application dependent, but in many cases such
cracks must be avoided to guarantee a high rendering qual-
ity.

Fortunately, it is relatively easy to evaluate the Bernstein
basis in a reversal invariant way; i.e., independent of pa-
rameter direction. This can be achieved using the following
procedure

void EvalBezCubic(float u, out float B[4]) {
float T = u, S = 1.0 - u;

B[0] = S*S*S;
B[1] = 3.0*T*S*T;
B[2] = 3.0*S*T*S;
B[3] = T*T*T;

}

Note that replacing u by 1− u interchanges the values of
S and T, leading to the reversal of basis function values. The
boundary curve is evaluated by taking the dot product of the
4 boundary control points and these basis function values.
Guaranteeing that the results are bitwise-identical on both
sides of a shared boundary requires commutativity of both
addition and multiplication. These commutativity require-
ments are satisfied by using IEEE floating point strictness
when compiling shader programs.

While guaranteeing bitwise-identical geometry along
shared patch boundaries is fairly straightforward using
Bézier patches, guaranteeing bitwise-identical normals is
not. The problem is that cross-boundary derivatives (e.g., the
v direction, if u is along the boundary) may not be computed
identically since they are constructed from different (non-
shared) input data. This will result in slightly different nor-
mal vectors along a shared patch boundary. When used for
lighting, the small color differences that might result may not
be a problem. However, when used for displacement map-
ping, these differences will likely lead to visible cracks along
patch boundaries. These problems are much easier to avoid
by using the B-spline basis.

3.2. B-spline Patches

The B-spline basis has deep theoretical roots far beyond the
scope of this report; we give B-splines only superficial treat-
ment here. B-splines are a special case of the more general
Non-Uniform Rational B-splines (NURBS), that are uniform
and polynomial (non-rational).

A bi-cubic B-spline surface can be written as a piecewise
mapping from a planar domain [0,m+1]× [0,n+1]

P(u,v) =
m

∑
i=0

n

∑
j=0

di, jN3(u− i)N3(v− j), (3)

where the di, j are a rectangular array of B-spline control
points, and N3(t) is a cubic B-spline basis function. N3(t) is
a C2 smooth, piecewise cubic polynomial curve comprised
of 4 non-zero curve segments. Since these basis functions
are C2 (curvature continuous), a linear combination of them
is also C2. This makes the construction of a curvature con-
tinuous surface easy.

c⃝ 2015 The Author(s)
c⃝ 2015 The Eurographics Association and Blackwell Publishing Ltd.

M. Nießner & B. Keinert & M. Fisher & M. Stamminger & C. Loop & H. Schäfer / Survey on Hardware Tessellation

Each individual cubic curve segment is determined by 4
contiguous control points, and each bi-cubic B-spline patch
by 16 control points. A pair of adjacent curve segments will
have 3 control points in common. Similarly, a pair of adja-
cent patches will have 12 control points in common. These
12 shared control points are exactly the ones needed to con-
struct the positions and normals along the shared boundary.

3.3. Catmull-Clark Subdivision Surfaces

Catmull-Clark subdivision [CC78] is a generalization of bi-
cubic B-spline subdivision to irregular control meshes. That
is, a mesh with faces and vertices not incident on 4 edges (ex-
traordinary vertices). By repeating the subdivision process,
a smooth limit surface is obtained as shown in Figure 4.

Figure 4: Several iterations of Catmull-Clark subdivision
applied to a cube-shaped base mesh.

The algorithm is defined by a simple set of subdivision
rules, which are used to create new face points (f j), edge
points (e j) and vertex points (v j) as a weighted average of
points of the previous level mesh.

3.3.1. Subdivision Rules

The Catmull-Clark smooth subdivision rules for face, edge,
and vertex points, as labeled in Figure 5, are defined as:

• Faces rule: f i+1 is the centroid of a face’s vertices.
• Edge rule: ei+1

j = 1
4 (v

i + ei
j + f i+1

j−1 + f i+1
j),

• Vertex rule: vi+1 = n−2
n vi + 1

n2 ∑
j

ei
j +

1
n2 ∑

j
f i+1

j .

v
1

v
0

e1
1

e1
0

en
0

e2
0

f 1
1

f 2
1

e3
1

e2
1

f n
1

e3
0

Figure 5: Labeling of vertices of a Catmull-Clark [CC78]
base mesh around the vertex v0 of valence n.

In the case that the input control mesh is locally regu-
lar, the resulting surface will locally be a bi-cubic B-spline.
Additional refinements over these regions, while needed to
refine the mesh, are not needed to determine the polynomial

structure of the surface that is known once an individual B-
spline patch has been determined. This patch structure is il-
lustrated in Figure 7. We will see in Section 3.7 that this
structure can be exploited using hardware tessellation for ef-
ficient rendering of the Catmull-Clark limit surface.

While subdivision surfaces freed designers from the
topology constraints of B-splines, further development was
needed to make them truly useful. For instance, the origi-
nal subdivision rules did not consider the case of a mesh
with boundary. Subsequent work took the idea a step further
and allowed edges to have a variable amount of sharpness –
called creases [HDD∗94, DKT98].

3.4. Parallel Subdivision using GPU Kernels

As shown before, the rules for constructing new mesh points
involve taking weighted averages of small, local collec-
tions of old mesh points. Gathering these points on the
CPU usually involves neighborhood queries using a mesh
connectivity data structure; e.g., winged-edge, half-edge, or
quad-edge. While the details between these structures dif-
fer slightly, the basic idea is the same. Incidence relations
are captured by linking edge data with pointers. In order to
satisfy a neighborhood query (e.g., given a vertex, return all
the vertices sharing an edge with the vertex in order), the
connectivity structure must be traversed, one edge at a time,
by following links and dereferencing pointers. Doing this on
the GPU is impractical, due to the length and varying sizes
of these edge chains.

3.4.1. Subdivision Tables

By assuming that mesh connectivity is static, or at least does
not change often, a simple table-driven approach becomes
feasible [NLMD12]. The idea is to encode the gather pat-
terns of vertex indices, needed to construct new mesh points
from old mesh points, and store these in tables. Since there
are 3 types of new points being constructed in a Catmull-
Clark subdivision surface (face, vertex, and edge), 3 com-
pute kernels are used. Each compute kernel executes a sin-
gle thread per new mesh point, and uses the indices stored
in the tables to gather the old mesh vertices needed in the
weighted average. Note that variations of table-driven sub-
division have been used before general purposed computing
was available on the GPU (e.g., [BS02]).

3.4.2. GPU Subdivision versus Hardware Tessellation

Given that subdivision on the GPU can be performed using
tables, it may seem that patch-based hardware tessellation
is not needed for rendering these primitives. One can sim-
ply transfer an unrestricted control cage to the GPU and let
its massive data-parallelism generate and render millions of
triangles. The problem with this idea is GPU memory band-
width. Each level of the refined mesh must be streamed to
and from the GPU and off-chip GPU memory. Each newly-
generated level is roughly 4 times as large as the old level;

c⃝ 2015 The Author(s)
c⃝ 2015 The Eurographics Association and Blackwell Publishing Ltd.

M. Nießner & B. Keinert & M. Fisher & M. Stamminger & C. Loop & H. Schäfer / Survey on Hardware Tessellation

i.e., an exponential growth rate. While the table-driven ap-
proach efficiently maps the subdivision rules to the GPU,
naïve use of this method will quickly become I/O bound.
Hardware tessellation, on the other hand, is incredibly ef-
ficient since it avoids global (off-chip) memory accesses.
Once a compact patch description is streamed to a local GPU
cache, no further global memory accesses are needed. The
hull, tessellation, domain, and even rasterization stages are
all performed using fast, local GPU cache memory.

3.5. Stam’s Algorithm

Stam [Sta98] proposed a method for the exact evaluation
of Catmull-Clark Subdivision Surfaces. The advantage of
Stam’s algorithm is that it treats a subdivision surface as a
parametric surface, which is seemingly ideal for hardware
tessellation. In order to make the combinatorics tractable,
Stam’s algorithm requires that extraordinary vertices be iso-
lated, so that no quadrilateral face is incident on more than
one extraordinary. A face incident to a single extraordinary
vertex, together with the vertices of all incident faces, is the
input to Stam’s algorithm; see Figure 6a. Let this collection
of 2n+8 vertices be labeled v0. With the resulting parame-
terization, all sub-patches can be enumerated

Fj,k(u,v) = N3(u)N3(v) ·Pj ·Sk ·v0, (4)

where j = 1,2,3 is the index of a quad sub-domain (see Fig-
ure 6b), k is the level of subdivision, N3(t) is the cubic B-
spline basis function, Pj is a picking matrix that generates the
corresponding B-spline control points for the chosen patch,
and S is the subdivision matrix whose entries correspond to
the weights of the Catmull-Clark subdivision algorithm; for
the details, we refer to [Sta98]. Performing the eigen decom-
position of S, the patches are rewritten as

Fj,k(u,v) = N(u,v) ·Pj ·V︸ ︷︷ ︸
eigen basis
functions

· Λk · V−1 ·v0︸ ︷︷ ︸
eigen space
projection

, (5)

where V and V−1 are the left and right eigenvectors and Λ
is the diagonal matrix of eigenvalues of S. Writing Fj,k(u,v)
this way shows that subdivision, or taking the matrix S to the
kth power, can be replaced by raising the diagonal elements
of Λ to the kth power. This requires substantially less com-
putation, O(c) operations per parametric evaluation. How-
ever, the constant c is rather large, due to the large num-
ber of floating point operations needed to evaluate the eigen
basis functions and their derivatives. Further, Stam’s algo-
rithm does not handle sharp subdivision rules, and obtaining
bitwise-exact boundary evaluation of positions and normals
is problematic due to the eigen space projection.

3.6. Approximate Subdivision Methods

In order to maximize performance, researchers considered
ways to render smooth higher-order surfaces that behave
similarly to subdivision surfaces but are easier to evaluate.

0 1

3 2

0,0 1,0

0,1

c)a) b)

Figure 6: a) Collection of control points input into Stam’s
algorithm. b) Labeling of corresponding sub-domains. c)
Nesting of sub-domains around an extraordinary vertex.

3.6.1. PN-triangles

The PN-triangle technique [VPBM01] was developed to add
geometric fidelity to the large body of existing triangle mesh
models. For each triangular face, a cubic Bézier triangle
patch is constructed using only the position and normal data
of the three incident vertices. A cubic Bézier triangle is de-
termined by 10 control points. The position and normal at
each vertex determines 3 control points that span the cor-
responding tangent planes. The final control is determined
by a quadratic precision constraint; that is, if the 9 previ-
ously constructed control points happen to be consistent with
a quadratic, then this 10th control point will be consistent
with the same quadratic. Note that this construction guaran-
tees that a PN-triangle surface is continuous (C0), but not
smooth (C1). To overcome this shortcoming, a PN-triangle
contains a quadratic normal patch, whose coefficients are
derived from the triangle’s vertex normals. These normal
patches, which are also continuous, are used for shading
rather than the cubic geometry patch.

PN-triangles predate hardware tessellation, but their rel-
atively simple and local construction is well suited to the
hardware tessellation paradigm. A hull shader program can
be used to convert a single mesh triangle and associated ver-
tex data into a cubic geometry, and quadratic normal, patch
pair. The domain shader stage will evaluate the cubic and
quadratic input patches at their barycentric uvw coordinate
triples. While PN-triangles are effective at improving the ap-
pearance of traditional triangle mesh models, they are not the
best choice for obtaining results that approach the geometric
quality of subdivision surfaces.

3.6.2. ACC-1: Approximation using Bézier Patches

Subdivision surfaces can be approximated based on quadri-
lateral bi-cubic patches [LS08]. Given a quad mesh as input,
the idea is similar to PN-triangles in that a geometry patch
is constructed to interpolate the position and tangent plane
of the Catmull-Clark subdivision limit surface at the cor-
ners of a mesh quadrilateral. This bi-cubic patch, while de-
signed to approximate the Catmull-Clark limit surface, will
only be continuous, not smooth. Therefore, a normal patch
is generated to create a smooth normal field for shading. As
with PN-triangles, this algorithm is easily implemented in

c⃝ 2015 The Author(s)
c⃝ 2015 The Eurographics Association and Blackwell Publishing Ltd.

M. Nießner & B. Keinert & M. Fisher & M. Stamminger & C. Loop & H. Schäfer / Survey on Hardware Tessellation

the hardware tessellation pipeline by using the hull shader
for patch construction, and the domain shader for patch (ge-
ometry and normal) evaluation. Unlike PN-triangles, ACC-1
geometry and normal patches are both bi-cubic. This simpli-
fies domain shader evaluation as only a single set of basis
functions needs to be computed.

One of the advantages of approximating Catmull-Clark
subdivision surfaces for hardware tessellation is that many
authoring tools already exist for creating Catmull-Clark con-
trol cages for off-line applications like CG movies. The
ACC-1 scheme made these tools available for real-time ap-
plications like games. However, professionally created sub-
division models often employ crease and boundary rules. A
full treatment of this issue in the context of ACC-1 patches
appeared in [KMDZ09].

While the ACC-1 scheme is relatively fast, the require-
ment that patch control points be 6 dimensional (3 for posi-
tion, 3 for surface normal), is not ideal and the underlying
surface is not geometrically smooth. This led researchers to
further develop approximate Catmull-Clark schemes. Sev-
eral papers that split quad mesh faces into four triangles
along both diagonals appeared [MNP08,MYP08,NYM∗08].
These works generated smooth surfaces, but did so by in-
creasing the patch count so that the effective throughput, the
ratio of input control point data to output amplified geome-
try, went down. Ideally, we want large patches that are eval-
uated many times, thereby increasing this throughput.

3.6.3. ACC-2: Approximation using Gregory Patches

Constructing a piecewise smooth surface of arbitrary topo-
logical type from polynomial patches is a non-trivial prob-
lem. The difficulty lies in honoring the requirement that
mixed partial derivatives (∂ 2F

∂uv = ∂ 2F
∂vu) are consistent among

patches at a shared extraordinary vertex. Adding degrees of
freedom by domain splitting can be used to solve this prob-
lem (cf. ACC-1). Another approach is to use non-polynomial
patches; this is the idea behind ACC-2 [LSNC09], a scheme
based on Gregory patches [Gre74].

A bi-cubic Gregory patch is defined by 20 control points.
Like a 16 control point bi-cubic Bézier patch, the 4 corner
and 8 edge control points completely define the boundaries
of the patch. The remaining interior control points are sim-
ilar. However, each interior control point of a Bézier patch
corresponds to two interior points of a Gregory patch. The
reason for this is closely related to mixed partial derivatives.
For a polynomial Bézier patch these must be equal (corre-
sponding to a single interior control point per vertex). For
non-polynomial Gregory patches, the mixed partial deriva-
tives can disagree (hence the two interior control points
per vertex). These additional degrees of freedom are used
to solve the patch-to-patch smoothness constraints indepen-
dently for Gregory patches, rather than as a (often times sin-
gular) system involving all patches incident on an extraordi-
nary patch. The drawback to this approach is that the Gre-

gory patch basis functions contain singularities (0
0) at cor-

ners. However, since we already know the limit position we
want for these points, this issue causes no real concern in
practice. The construction of ACC-2 control points is very
similar to those for ACC-1.

To the best of our knowledge, the Gregory patch-based
ACC-2 algorithm is the faster method for interpolating limit
position corners and smoothly approximating the surface
elsewhere. However, an artist who has painstakingly con-
structed a model using a Catmull-Clark subdivision surface
is unlikely to be pleased if the renderer produced a slightly
different result than intended. These differences are even
more obvious when considering surface parameterization;
however, He et al. [HLS12] presented a way to mitigate this
to an extent. Artists and games developers would be much
happier if the hardware tessellator could be used to render a
Catmull-Clark subdivision surface accurately and efficiently.

3.7. Feature-Adaptive Subdivision

Feature-adaptive subdivision is a method for rendering
Catmull-Clark limit surfaces with crease edge tags, that
combines table-driven subdivision and hardware tessella-
tion [NLMD12, Nie13]. As the term feature-adaptive im-
plies, subdivision is only used where needed, to create as
few bi-cubic patches as possible. These patches are then effi-
ciently rendered using hardware tessellation. This algorithm
has become the basis for Pixar’s OpenSubdiv [Pix12], which
is now used in major modeling packages.

It is well known that the limit surface defined by Catmull-
Clark subdivision can be described by a collection of bi-
cubic B-spline patches, where the set has infinitely many
patches around extraordinary vertices, as illustrated in Fig-
ure 7(left). Similarly, near creases, the number of limit
patches grows as the crease sharpness increases, as shown
in Figure 7(right).

Feature-adaptive subdivision proceeds by identifying reg-
ular faces at each stage of subdivision, rendering each of
these directly as a bi-cubic B-spline patch using hardware
tessellation. Irregular faces are refined, and the process re-
peats at the next finer level. This strategy uses a table-driven
approach; however, the subdivision tables are restricted to

Figure 7: The arrangement of bi-cubic patches (blue)
around an extraordinary vertex (left), and near an infinitely
sharp crease (right). Patches next to the respective feature
(green) are irregular.

c⃝ 2015 The Author(s)
c⃝ 2015 The Eurographics Association and Blackwell Publishing Ltd.

M. Nießner & B. Keinert & M. Fisher & M. Stamminger & C. Loop & H. Schäfer / Survey on Hardware Tessellation

Figure 8: The feature-adaptive subdivision scheme applied
to the Monsterfrog model (top) and a grid with four extraor-
dinary vertices (bottom). Subdivision is only performed in
areas next to extraordinary vertices.

irregular faces. A face is regular only if it is a quad with
all regular vertices and if none of its edges or vertices are
tagged as sharp. In all other cases the face is recognized as
irregular, and subdivision tables are generated for a minimal
number of subfaces. All of this analysis and table generation
is done on the CPU at preprocessing time. Vertex and edge
tagging is done at each level, depending on how many times
the area around an irregular face should be subdivided. This
might be the maximum desired subdivision depth around an
extraordinary vertex, or the sharpness of a semi-sharp edge.
As a result, each subdivision level will be a sequence of local
control meshes that converge to the features of interest (see
Figure 8).

3.7.1. Patch Construction

Once the subdivision stage is complete, the resulting patches
are sent to the hardware tessellator for rendering. For each
subdivision level there are two kinds of patches: full patches
and transition patches.

3.7.2. Full Patches

Full patches (FPs) are patches that only share edges with
patches of the same subdivision level. Regular FPs are
passed through the hardware tessellation pipeline and ren-
dered as bi-cubic B-splines. It is ensured by feature-adaptive
subdivision that irregular FPs are only evaluated at patch
corners. This means that for a given tessellation factor,
⌈log2 tessfactor⌉ adaptive subdivision steps must be per-
formed. Since current hardware supports a maximum tessel-
lation factor of 64 (= 26), no more than 6 adaptive subdivi-
sion levels are required. In order to obtain the limit positions
and tangents of patch corners of irregular FPs, a special ver-
tex shader is used.

3.7.3. Transition Patches

Note that the arrangement of bi-cubic patches created by
adaptive subdivision ensures that adjacent patches corre-
spond either to the same subdivision level, or their subdivi-
sion levels differ by one. Patches that are adjacent to a patch
from the next subdivision level are called transition patches
(TPs). It is additionally required that TPs are always regular.
This constraint is enforced during the subdivision preprocess
by marking for subdivision all irregular patches that might
become TPs. This constraint significantly simplifies the al-
gorithm at the expense of only a small number of additional
patches.

To obtain crack-free renderings, the hardware tessellator
must evaluate adjacent patches at corresponding domain lo-
cations along shared boundaries. Setting the tessellation fac-
tors of shared edges to the same value will ensure this. How-
ever, TPs share edges with neighboring patches at a different
subdivision level by definition. One solution to this problem
would be using compatible power-of-two tessellation factors
so that the tessellations will line up. However, allowing only
power-of-two tessellation factors is a severe limitation that
reduces the available flexibility provided by the tessellation
unit. In order to avoid this limitation, each TP is split into
several sub-patches using a case analysis of the arrangement
of the adjacent patches. Since each patch boundary can ei-
ther belong to the current or to the next subdivision level,
there are only 5 distinct cases, as shown in Figure 9.

Each sub-domain corresponds to a logically separate sub-
patch, though each shares the same bi-cubic control points
with its TP siblings. Evaluating a sub-patch involves a linear
remapping of canonical patch coordinates (e.g., a triangular
barycentric) to the corresponding TP sub-domain, followed
by a tensor product evaluation of the patch. This means that
each sub-domain type will be handled by draw calls requir-
ing different constant hull and domain shaders, though these
are batched according to sub-patch type. However, since the
control points within a TP are shared for all sub-patches, the
vertex and index buffers are the same. The overhead of mul-
tiple draw calls with different shaders but the same buffers
becomes negligible for a larger number of patches.

By rendering TPs as several logically separate patches,
all T-junctions in the patches are eliminated from the struc-
ture of a surface. This means that as long as consistent tes-
sellation factors are assigned to shared edges, in principle
a crack-free rendered surface is obtained. In practice how-
ever, due to the behavior of floating point numerics, addi-
tional care is required as discussed previously.

3.7.4. Optimizing Semi-Sharp Creases

Excluding crease edges, the time and space requirements of
this feature-adaptive subdivision approach is linear in the
number of extraordinary vertices in a mesh. Including crease
edge, the time and space requirements are exponential, al-

c⃝ 2015 The Author(s)
c⃝ 2015 The Eurographics Association and Blackwell Publishing Ltd.

M. Nießner & B. Keinert & M. Fisher & M. Stamminger & C. Loop & H. Schäfer / Survey on Hardware Tessellation

(1) (2) (3) (4) (5)

Figure 9: There are five possible constellations for Transition Patches (TPs). While TPs are colored red, the current level of
subdivision is colored blue and the next level is green. The domain split of a TP into several sub-patches allows full tessellation
control on all edges, since shared edges always have the same length.

though this growth is less than näive subdivision. To im-
prove this behavior, Nießner et al. [NLG12] create optimized
shaders specifically for handling semi-sharp creases. They
consider only patches with isolated constant sharpness tags,
which will appear after each subdivision level. Within such
a patch, the unit square domain can be partitioned into 2 (in-
teger sharpness) or 3 (fractional sharpness) zones, which can
be directly evaluated using an eigen analysis of correspond-
ing polynomial structures. This allows to immediately tessel-
lated large patches with only a single crease tag, thus greatly
improving the time and space requires of feature-adaptive
subdivision.

3.7.5. Dynamic Feature-Adaptive Subdivision

An extension to the feature-adaptive subdivision algorithm
has been proposed by Schäfer et al. [SRK∗15]. The core idea
is to enable an independent subdivision depth for every ir-
regularity; i.e., locally-adaptive subdivision within a single
mesh where the subdivision depth at a vertex is uncorrelated
to those of other vertices. To this end, subdivision kernels fill
a dynamic patch buffer on-the-fly with the appropriate num-
ber of patches corresponding to the chosen level-of-detail
scheme. Especially in the context of large meshes, this re-
duces the number of generated and processed patches, thus
improving the rendering performance. In the end, this pro-
vides an abstraction over patch regularities; i.e., a tess factor
can be assigned to any patch of the base mesh irrespective of
whether it is irregular or not.

3.8. Summary

Table 1 shows a comparison overview of different subdivi-
sion surface rendering methods, including approximate and
accurate patching schemes. We report properties such as
speed, accuracy and continuity, bit-wise exactness, and the
flexibility of handling special features. Feature-adaptive sub-
division is most flexible while achieving high frame rates. It
can be also easily applied to other subdivision schemes such
as Loop [Loo87], as shown by Huang et al. [HFN∗14].

4. Adaptive Tessellation

In Section 3.6, we presented different methods for repre-
senting a subdivision surface so that it can be efficiently

processed by tessellation hardware, which can require care-
ful handling in the presence of extraordinary vertices or
creases. However, even for an ordinary Catmull-Clark patch
where analytic evaluation is straightforward, different trade-
offs must be made when the idealized surface is tessellated
down to a discrete set of triangles. If the tessellation is too
coarse (large triangles), the surface will be under-tessellated,
leading to interpolation artifacts, faceting on silhouettes, and
an undersampled displacement field. If the tessellation is too
fine (small triangles), the surface will be over-tessellated, re-
ducing rasterization efficiency. Modern GPUs (circa 2014)
are still not optimized for pixel-sized triangles, which can
make this performance cost significant. The desired tessella-
tion threshold depends on the current viewpoint the surface
is being rendered from, the material properties of the surface,
and the performance demands of the underlying applica-
tion. For example, surfaces with fine-scale displacement de-
tail will require dramatically more tessellation than smooth,
non-displaced geometry.

4.1. Heuristic Tessellation Strategies

The underlying tessellation hardware on current GPUs is vi-
sualized in Figure 3, requiring tessellation factors to be de-
fined for each patch edge [Mor01]. A simple approach to
computing tessellation factors is as a function of the dis-
tance from the eyepoint to the midpoint of a patch edge
[NLMD12]. Another option is to fit a sphere around an
edge and determine the tessellation factors from the pro-
jected spheres diameter in screen space [Can11]. Both meth-
ods are easy to compute and give the same result for a
shared edge regardless of which patch is being considered,
although edge length projection is not rotation-invariant (see
Figure 10). Note that it is critical that tess factors for shared
edges match in order to guarantee a crack-free rendering.
Further heuristics are shown in the context of displacement
mapping [NL13].

4.2. Pixel-Accurate Rendering

The concept of pixel-accurate rendering [YBP12, YBP14]
is used to determine a tessellation factor that guarantees
a tessellation of a surface differs from the true surface,
when measured in screen-space pixel coordinates, by at most

c⃝ 2015 The Author(s)
c⃝ 2015 The Eurographics Association and Blackwell Publishing Ltd.

M. Nießner & B. Keinert & M. Fisher & M. Stamminger & C. Loop & H. Schäfer / Survey on Hardware Tessellation

exact limit order of bitwise-exact edge meshes with semi-sharpspeed
surface continuity position normal boundary creases

Stam ## � C2 − − − −
PN-triangles # − C0 � − � −

ACC-1 # − C0 � − � −
ACC-2 − C1 � − � −

Feature-adaptive � C2 � � � �
Table 1: A comparison of properties of different subdivision surface rendering methods using hardware tessellation.

half a pixel. For non-displaced Catmull-Clark surfaces, this
is accomplished using a bounding structure called a slefe,
meaning Subdividable Linear Efficient Function Enclosures
[LP01]. These are piecewise linear upper and lower bound-
ing polylines that can be computed using a precomputed ta-
ble of numbers and a curve’s Bézier control points. This no-
tion is extended to surfaces using slefe boxes, whose pro-
jections can be used to estimate a tessellation factor for an
entire patch. Since the tessellation factors for neighboring
patches will likely differ on a shared edge between patches,
the edge’s tessellation factor is set to the larger tessellation
factor estimated for the two incident patches.

edge

screen

v0

v1

distance-based
proj. edge length

d
ia

m

proj. diameter

Figure 10: Tessellation heuristics: in contrast to edge length
projection (blue) the heuristic using an edges projected
bounding sphere diameter is rotation invariant (red).

4.3. Splitting Patches

For a large patch, there may not exist a set of edge tessella-
tion factors that yields a good tessellation. This can occur for
two reasons: the patch may have geometric or displacement
detail that requires greater than the maximum edge tessella-
tion factor (64 vertices per edge for most hardware), or the
patch may have non-uniform geometric complexity on its in-
terior that cannot be achieved just with edge constraints. In
offline rendering systems, one approach that is used to over-
come this problem is to split such patches into sub-domains,
which can then either be processed by the tessellator or re-
cursively split [CCC87]. Care must be taken to ensure that
the resulting sub-patches align at edge boundaries to avoid
severe surface cracking artifacts. One approach to achieve
this alignment is to enforce consistent power-of-two con-
straints on all edges and then introduce stitching triangles
between different splitting levels, but this approach is diffi-
cult to parallelize and prevents the resulting tessellation from
adapting well to the underlying geometry.

To overcome the power-of-two constraint, DiagSplit
allows crack-free patch splitting with arbitrary integer

edge tessellation factors by performing splits along non-
isoparametric lines in the uv parameter space [FFB∗09]. Di-
agSplit evaluates a tessellation factor for each edge using
one of the above methods, or determines that the edge is
non-uniform and forces both patches incident on this edge
to split. When all of a patch’s incident edges have fixed
tessellation factors it is sent to the hardware tessellator.
The FracSplit algorithm improves upon DiagSplit to enable
continuous level-of-detail [LPD14]. Unlike DiagSplit, Frac-
Split is able to handle fractional edge tessellation factors by
smoothly interpolating the split from patch corners to the
edge midpoint. This avoids visual popping during animation
and camera motion while preserving a crack-free tessella-
tion. Figure 11 shows a comparison of split patterns between
DiagSplit and FracSplit.

DiagSplit Integer DiagSplit Fractional FracSplit

Figure 11: DiagSplit and FracSplit patch-splitting and tes-
sellation behavior. DiagSplit splits along a parametric line
close to the middle of the patch, while FracSplit smoothly
interpolates the parametric split between one corner of the
patch and the edge midpoint.

5. Displacement Mapping

In 1978, Blinn proposed perturbing surface normals using
a wrinkle function [Bli78]. While this mimics the shading
of a high-resolution surface, the geometry itself remains un-
changed. This led Cook [Coo84] to develop displacement
mapping to give objects more realistic silhouettes. Displace-
ment mapping has since been used as a means to efficiently
represent and animate 3D objects with high-frequency sur-
face detail [SKU08]. Where texture mapping assigns color to
surface points, displacement mapping assigns offsets, which
are either scalar- or vector-valued. The advantages of dis-
placement mapping are two-fold. First, only the vertices
of a coarse base mesh need to be updated to animate the
model. Second, since only the connectivity for the coarse
mesh is needed, less space is required to store the equiva-
lent, highly detailed mesh. In the following, we primarily

c⃝ 2015 The Author(s)
c⃝ 2015 The Eurographics Association and Blackwell Publishing Ltd.

M. Nießner & B. Keinert & M. Fisher & M. Stamminger & C. Loop & H. Schäfer / Survey on Hardware Tessellation

consider scalar-valued displacements since they are faster to
render and take up less storage. The displacement is then
achieved by tessellating the base mesh and moving the gen-
erated vertices along their normal according to the value
stored in the displacement map (see Figure 1).

Hardware tessellation is ideally suited for displacement
mapping. A coarse mesh provides a base surface that is tes-
sellated on-chip to form a dense triangle mesh that is imme-
diately rasterized without further memory I/O. While con-
ceptually simple and highly efficient, there are two major
sources for artifacts that have to be addressed.

Figure 12: Cracks on the displacement-mapped Monster-
frog (right) appear at uv chart boundaries (atlas left) when
sampled displacement and normal values do not exactly
match on both sides of a seam.

First, before a displacement map can be applied, the base
mesh is typically endowed with an explicit parameterization,
often in the form of a 2D texture atlas (see [FH05] for a sur-
vey). Conceptually, seams must be introduced on edges to
unfold the surface into the plane, creating a mapping from
the plane to the surface. Points on seams map to more than
one point in texture space, resulting in inconsistent values;
bilinear texture filtering exacerbates this problem. For dis-
placement mapping, these discontinuities in surface offset or
normal can lead to unacceptable cracks in a rendered surface
as shown in Figure 12.

Second, hardware tessellation is based on the dynamic re-
tessellation of patches, so the underlying sampling pattern
is continuously updated to achieve triangles of uniform size
(see Section 4). However, continuously changing the sam-
pling pattern creates swimming artifacts – the surface ap-
pears to fluctuate and the sampling pattern becomes visible.
This effect is caused by under-sampling the displacement
map while changing the sampling positions over time.

Avoiding these artifacts is an active research area. In
the following we discuss displacement mapping methods
and provide details on selected recent publications. Hiding
seams in displacement mapping mainly depends on the un-
derlying parameterization. Therefore, the approaches can be
categorized into the following classes:

• Texture Atlases 5.1: The general case of explicitly param-
eterized meshes, as described above. The atlas can consist
of multiple unconnected regions (charts).

• Heightmaps 5.2: Typically used for planar surface dis-
placement using a texture atlas consisting of only a single,
rectangular chart without seams.

• Procedural Displacement 5.3: Avoid texture related prob-
lems by amplifying geometry computationally.

• Per-Face Texturing 5.4: Methods where each patch maps
to a unique texture tile with displacement values.

5.1. Texture Atlases

Providing consistent transitions between chart boundaries
in a texture atlas is challenging [SWG∗03] and leads to a
wide range of approaches. Artifacts can be reduced by op-
timizing seam positions [SH02, LPRM02] or by creating
textures with matching colors across seams [LH06]. How-
ever, minor discontinuities will always remain as long as
chart boundaries differ in length or orientation in the tex-
ture domain. Small discontinuities are acceptable for color
textures; however, for displacement textures they result in
cracks and can be pronounced. Thus, parameterizations were
proposed with consistent chart boundaries and orientation
to obtain a perfect alignment of texel grids. Carr et al.
[CHCH06, CH04] and [PCK04] employ quad segmentation
on the input mesh and map the resulting charts to axis-
aligned squares in the texture domain. This mapping induces
distortions unless all quads in the segmentation are of equal
size. Ray et al. [RNLL10] solve this issue by aligning match-
ing boundary edges with an indirection map containing scal-
ing and lookup information.

A different class of approaches aim to create watertight
surfaces without modifying the parameterization. For in-
stance, Sander et al. [SWG∗03] close gaps after displace-
ment by moving boundary vertices to a common, precom-
puted zippering path. González and Patow [GP09] insert a
ribbon of triangles between charts in the texture domain to
interpolate boundaries in a specialized shader program.

Texture coordinates are typically stored and processed as
floating point values. Unfortunately, precision is unevenly
distributed (see Goldberg [Gol91]); i.e., precision decreases
with distance from the origin. This results in different sam-
ple positions, and thus displacement discontinuities, when
interpolating texture coordinates on seam edges in different
locations in the atlas, even if the edges’ lengths are equal
and consistently oriented. Castaño [Cas08] avoids these pre-
cision problems by pre-selecting one of the matching edges
or vertices for sampling the seam. The texture coordinates
of the preselection are stored for every patch vertex and
edge, resulting in a consistent evaluation during rendering.
Thereby, this approach is independent from boundary orien-
tations at the cost of storing additional texture coordinates
(16 for quads, 12 for triangles).

The majority of parameterization methods used for color
texturing minimize only geometric metrics and assumes no
prior knowledge of the signal to be stored. However, when

c⃝ 2015 The Author(s)
c⃝ 2015 The Eurographics Association and Blackwell Publishing Ltd.

M. Nießner & B. Keinert & M. Fisher & M. Stamminger & C. Loop & H. Schäfer / Survey on Hardware Tessellation

the data to be stored is known (e.g., surface samples with
distances for displacement mapping), this prior knowledge
can well be used to optimize the parameterization, and to al-
locate more texels in regions with high detail. This inspired
Sloan et al. [SWB98] and Sander et al. [SGSH02] to opti-
mize the parameterization based on an importance measure-
ment; e.g., the size of a triangle in the detailed mesh or the re-
construction error introduced. Following these approaches,
Jang and Han [JH13, JH12] displace vertices generated with
hardware tessellation into regions with high detail.

5.2. Heightfields

In applications such as digital elevation modeling and terrain
rendering the underlying base model is typically spherical
or locally planar. For example, a planet can be subdivided
into mostly rectangular regions, which are then mapped to a
square in the texture domain.

When using such heightfields, various problems arise.
First, the amount of available elevation information typically
does not fit into the GPU memory for rendering (e.g., the
Earth’s surface at a resolution of one texel per 1m2 would re-
quire 1.855 TB of memory). This problem can be solved by
creating a hierarchy of different resolutions and only keeping
a few levels in GPU memory at a time, as proposed by Tan-
ner et al. [TMJ98]. Second, for watertight rendering, seams
between heightfields, possibly at different resolutions, need
to be handled. Third, the surface geometry should ideally be
sufficiently dense to reconstruct details close to the observer
and coarser at distance to allow for interactive rendering. For
watertight rendering, this requires handling of patch bound-
aries with different mesh resolutions in addition to seams
between heightfields. This led to a wide range of tessellation
and level-of-detail schemes; see [PG07] for a survey.

Interactively rendering high-density heightfields requires
displacing a densely tessellated mesh. Hardware tessellation
is ideally suited for this task. Massive amounts of geometry
can be adaptively generated from a coarse mesh, saving pre-
cious GPU memory, which in turn, allows for using higher
resolution heightfields, since a large portion of the mesh to
be displaced is generated on the fly.

Tatarchuk et al. [TBB10] subdivide the planar in-
put geometry into equally sized sub-patches to overcome
hardware-imposed tessellation density limitations. Instead
of a uniform subdivision, Cantlay [Can11] subdivides the
input geometry using a chunked-LOD approach [Ulr02] to
allow higher tessellation close to the observer. During con-
struction Cantlay restricts the patches to a power-of-two in
relative size, which is then stored with each patch. Water-
tight rendering is achieved by making adjacent edges concur
on a matching tessellation factor depending on the relative
patch sizes (see Section 4.1).

In contrast to the previous methods, Bonaventura [Bon11]

Figure 13: Terrain rendering with a low-resolution height-
field (left) and procedurally amplifying geometry with high-
frequency detail (right).

considers different heightmap resolutions (mipmaps) dur-
ing rendering. The input mesh is subdivided into equally
sized quads, and tessellation factors at edges are restricted to
powers-of-two. The mipmaps for trilinear sampling are se-
lected such that the average vertex density matches the texel
density. Yusov and Shevtsov [YS11] compress heightfields
in a GPU-friendly format that can be used to reduce mem-
ory I/O for out-of-core rendering of large data sets.

5.3. Procedural Displacement

Modeling realistic environments such as cities or natural-
looking plants is a time consuming process. Man-made
structures and plants are often composed of simple shapes
with small variations (e.g., plants with different numbers
of leaves and variations in shape). Procedural approaches
aim at creating massive content computationally. Applica-
tions include modeling cities, large realistic terrains, com-
plex plants, or extremely small surface details (e.g., skin).
Procedural methods offer a large variety of uses: content can
be automatically generated, parameterized, stored and com-
bined with artist-created content. On-the-fly generation en-
ables rendering massive amounts of content with small I/O
requirements with only a small set of parameters having to
be uploaded. Therefore, it is reasonable to combine proce-
dural techniques with hardware tessellation.

Bonaventura [Bon11] shows how to apply hardware tes-
sellation to ocean rendering. Here, the ocean is represented
by a procedural heightmap function defined over a ground
plane. In the context of planar surface displacements Can-
taly [Can11] shows how to amplify a terrain, which follows a
base heightmap, with procedurally generated detail displace-
ments as shown in Figure 13.

Instead of directly evaluating procedural heightmaps, ge-
ometry and scene properties can also be generated by a set of
rules, affording potentially more complex kinds of content.
This approach was first proposed by Lindenmayer [Lin68]
for describing and researching plant growth. Each species
is described by a shape grammar [Sti80] and individuals
by a small set of parameters. Large amounts of plants are
then obtained by interpreting the grammar for each individ-
ual. Shape grammars found widespread use in architectural
modeling, city planning, simulation and content creation for
movie production and games (see [WMWF07] for a survey).

c⃝ 2015 The Author(s)
c⃝ 2015 The Eurographics Association and Blackwell Publishing Ltd.

M. Nießner & B. Keinert & M. Fisher & M. Stamminger & C. Loop & H. Schäfer / Survey on Hardware Tessellation

(0,0)

(1,1)

Figure 14: Face-local texturing approaches implicitly pa-
rameterize of each face by the local vertex order.

Marvie et al. [MBG∗12] propose a method for evaluat-
ing shape grammars directly within the tessellation shaders.
After grammar evaluation, a set of terminal symbols remain
that are replaced by detailed geometry instances or simple
textured quads (e.g., facade walls) in a geometry shader. For
LOD rendering they switch between geometry and texture
terminal symbols depending on the viewer distance. Exper-
imental results show a massive city scene with about 100k
buildings and 550k trees rendered at interactive rates on an
Nvidia GTX 480, with buildings and trees generated from 2
and 7 different grammars. Grammars and parameters are ad-
justable, allowing for interactive feedback and verification.
An explicit polygonal representation of the scene with de-
tailed geometry would require 2.3 TB of GPU memory in
contrast to 900 MB with the method of Marvie et al., mostly
occupied by geometry terminal symbols.

5.4. Per-Face Texturing Methods

Most automatic global parameterization approaches either
aim at creating as few seams, and thus charts, as possible
or striving towards minimizing distortions resulting in more
distinct charts. When packed into a texture atlas, charts must
not overlap and are typically enclosed by a texel margin
to prevent sampling from neighboring charts. This results
in many texels not covered by charts and, thus, in an in-
effective utilization of the available texture space. The use
of mipmapping [Wil83] to prevent undersampling artifacts
exacerbates the problem, requiring larger margins such that
charts in lower resolution textures do not overlap. Maruya
[Mar95] proposes to increase coverage by tightly packing
triangles in arbitrary order into equally sized blocks. There-
fore, each mesh triangle is mapped to a isosceles right tri-
angle with edges being power-of-two fractions of the block
size. Carr et al. [CH02] improve this approach by mapping
adjacent triangles to blocks. This reduces discontinuities and
enables mipmapping individual blocks.

Instead of a global parameterization, Burley and
Lacewell [BL08] propose per-face texturing with each quad
face implicitly parameterized by the order of its corner ver-
tices (see Figure 14). Each face is assigned a power-of-two
sized texture block enabling mipmapping each face indi-
vidually. The full resolution and down-sampled face blocks

are then packed into a global texture atlas. Further, indices
to adjacent face blocks are stored with each face to enable
seamless evaluation by sampling neighboring face textures
at boundaries in their offline renderer. While this approach
works well for offline rendering, evaluating and sampling
neighboring faces through an indirection pointer introduces
dependent texture reads which negatively impact the perfor-
mance when applied on the GPU.

5.4.1. Multiresolution Attributes

Schäfer et al. [SPM∗12] present a method to avoid texture-
related artifacts by extending the concept of vertex attributes
to the volatile vertices generated by hardware tessellation.
To this end, they use a data structure that follows the hard-
ware tessellation pattern, where for each generated vertex
a set of attributes such as surface offset, normal or color is
stored. This direct vertex-to-attribute mapping enables them
to overcome under-sampling artifacts appearing when sam-
pling attributes from textures.

Conceptually, their data structure is similar to the per-
face texture tiles [BL08]. However, they store a linear ar-
ray of attributes corresponding to hardware generated ver-
tices for each face (see Figure 15). Providing consistent tran-
sitions between faces in tile-based texturing approaches is
of paramount importance for preventing discontinuities and
cracks. Hence, Schäfer et al. separately store attributes of
inner face vertices from those at corners and edges shared
between multiple faces. Attributes shared by adjacent faces
are only stored once, resulting in a consistent evaluation and
transitions between faces. This eliminates all discontinuities
besides from those already present in the input mesh. Dur-
ing rendering, they use the implicit uv-coordinate of a patch
in the domain shader to access the data in the linear array.
In addition, they show filtering operations on the data and
signal-adaptive storage of the data at multiple resolutions.
The data structure further enables continuous level-of-detail
without popping artifacts when using adaptive tessellation.

L=0

L=1L=2L=3

Figure 15: Linearization of triangle tessellation pattern in
inward-spiraling order (left). Vertex locations on different
power-of-two tessellation patterns are present in higher lev-
els at exact same uvw positions (vertices colored by level of
first appearance).

c⃝ 2015 The Author(s)
c⃝ 2015 The Eurographics Association and Blackwell Publishing Ltd.

M. Nießner & B. Keinert & M. Fisher & M. Stamminger & C. Loop & H. Schäfer / Survey on Hardware Tessellation

nearest bilinear

Figure 16: Comparing the quality for color data; from left:
rendering; close-up showing base geometry; close-up of the
eye using uv-texturing (top) and the method of Schäfer et
al. (bottom) showing nearest neighbor and bilinear filtering.

Comparison to UV-Textures The method of Schäfer et al.
[SPM∗12] and uv-textures are similar in terms of quality
when using bi- and tri-linear filtering. However, Schäfer et
al. avoid undersampling artifacts and cracks. Differences are
visible when comparing nearest neighbor sampling which
makes the underlying storage pattern (rectangular shape of
texel for uv-textures, triangular pattern using their represen-
tation) visible (see Figure 16). Performance measurements
show that their method is on-par with uv-textures.

5.4.2. Analytic Displacement Mapping

A major drawback to uv-texture displacement maps is the re-
quirement for an additional map to retrieve normal informa-
tion. This causes a significant amount of memory overhead
and updating displacement data inconvenient since normals
need to be re-computed with every surface update.

Nießner and Loop [NL13] present an approach that elimi-
nates this problem by obtaining normal information directly
from an analytic offset function. Their method appeared in
the context of displaced subdivision surfaces, and formulates
the displaced surface as

f (u,v) = s(u,v)+Ns(u,v)D(u,v), (6)

where s(u,v) is a base Catmull-Clark limit surface defined
by a coarse base mesh, Ns(u,v) is its corresponding normal
field, and D(u,v) is a scalar-valued displacement function.
The important property is that the base surface is consis-
tently C2, except at a limited number of extraordinary ver-
tices where it is still C1. D(u,v) is then defined by construct-
ing a scalar-valued bi-quadratic B-spline with a Doo-Sabin
subdivision surface structure [DS78], which is C1 with van-
ishing first derivatives at extraordinary vertices. Thus, the
displaced surface f (u,v) is also C1, facilitating smooth sur-
face normals that can be derived analytically without requir-
ing an explicit normal map. While this reduces memory con-
sumption and rendering time, it also allows for efficient dy-
namic surface edits.

Tile-Based Texture Format In order to avoid texture seam
misalignments, which plague classic uv-atlas parameteriza-
tion texture methods, Nießner and Loop [NL13] propose a

Tile texture

overlap

mip 0

mip 1

mip 2

Figure 17: Snippet of the tile-based texture [NL13] format
used for displacement data (8× 8 per tile; blue) showing a
closeup of a single tile (red outline) including overlap region
(gray) and mip levels.

tile-based texture format to store their displacement data.
They store a bi-quadratic displacement function whose co-
efficients are stored in an axis-aligned fashion in parameter
and texture space. This can be seen as an improved GPU ver-
sion of Ptex [BL08]; however, adjacent tile pointers, which
are impractical on the GPU, are absent. Instead, a one-texel
overlap per tile is stored to enable filtering while matching
displacements at tile boundaries. An example with two tex-
ture tiles is shown in Figure 17 where each tile corresponds
to a quad face of the Catmull-Clark control mesh. Tile edges
are required to be a power-of-two (plus overlap) in size, that
is, for a tileSize = 2k (for integer k ≥ 1), tile edge lengths are
of the form tileSize+2. Adjacent tiles do not need to be the
same size.

Additional care must be taken with overlap computations
at extraordinary vertices, where four tiles do not exactly
meet. The idea is to make all tile corners that correspond
to the same extraordinary vertex equal in value by averaging
corner values. As a result, ∂

∂u D = ∂
∂v D = 0 at these tile cor-

ners. While this limitation is unfortunate from a modeling
perspective, it is beneficial from a rendering perspective, as
it is guaranteed that the displacement spline D(u,v) will be
C1 across all tile boundaries (see [Rei97] for the proof).

The format also stores a full mipmap pyramid [Wil83] for
each tile in order to avoid undersampling artifacts. Since dis-
placement values are coefficients of a bi-quadratic surface,
mip pyramids are computed based on quadratic B-wavelets
[Ber04]. All tiles are then efficiently packed in a global tex-
ture with mip levels of individual tiles stored next to each
other (cf. Figure 17). While this leaves some unused space,
it provides efficient data access due to cache coherency. Ad-
ditionally, the tile size and an offset to the tile location within
the global texture is stored in a separate buffer for each quad
face. Tile data is then indexed by the face/patch ID.

Surface Evaluation The key idea behind this approach is
to consider a higher-order displacement function which fa-
cilitate analytically determining normals on the displaced
surface. The base surface s(u,v) is the limit surface of the
Catmull-Clark subdivision defined by a two-manifold con-
trol mesh, possibly with mesh boundaries and can be effi-

c⃝ 2015 The Author(s)
c⃝ 2015 The Eurographics Association and Blackwell Publishing Ltd.

M. Nießner & B. Keinert & M. Fisher & M. Stamminger & C. Loop & H. Schäfer / Survey on Hardware Tessellation

Figure 18: Catmull-Clark base surface; patch boundaries
shown as thick lines. Displacement surface: bi-quadratic
Doo-Sabin B-splines; scalar coefficients on top of base sur-
face normal field shown as thin lines.

ciently evaluated and rendered using feature-adaptive sub-
division [NLMD12]. A one-to-one correspondence between
these quadrilateral faces and unit square domains of tiles is
established, giving rise to a global parameterization of the
surface (via a face ID; u,v∈ [1,0]× [0,1] triple). The analytic
displacement function D(u,v) is defined by a scalar-valued
bi-quadratic B-spline. These patches have an arrangement
that is consistent with the Doo-Sabin [DS78] subdivision,
meaning that the control mesh for the scalar displacement
coefficients is dual, with refinements, to the control mesh of
the base mesh. Note, that D(u,v) is scalar-valued and can be
thought of as a height field. In other words, both the base
surface s(u,v) and the displacement function D(u,v) corre-
spond to the same topological two-manifold, though embed-
ded in R3 and R1, respectively. Figure 18 shows a detailed
view of a model with base patch edges (thick curves) and
the displacement function coefficients over the base surface
(thin grid). For practicality’s sake, a constraint is imposed at
extraordinary vertices that causes first derivatives of the dis-
placement function D(u,v) to vanish at these points [Rei97].
This degeneracy implies that D(u,v) is a globally C1 func-
tion that can be evaluated over the entire manifold without
particular case handling.

For given u,v coordinates and face ID, the displaced sur-
face f (u,v) of a patch can then be computed by evaluating
the base patch s(u,v), its normal Ns(u,v), and the corre-
sponding displacement function D(u,v). The scalar displace-
ment function is evaluated by selecting the 3×3 array of co-
efficients di, j for the bi-quadratic sub-patch of D(u,v), cor-
responding to the u,v value within its tile domain. The patch
parameters u,v are transformed into the sub-patch domain
(û, v̂) using the linear transformation T , where û = T (u) and
v̂ = T (v). T is defined as:

T (u) = u · tileSize−⌊u · tileSize⌋+ 1
2 , (7)

The scalar displacement function

D(u,v) =
2

∑
i=0

2

∑
j=0

B2
i (T (u))B

2
j(T (v))di, j (8)

is then evaluated, where di, j are the selected displacement

coefficients, and B2
i (u) are the quadratic B-spline basis func-

tions. The base surface normal Ns(u,v) is obtained from the
partial derivatives of s(u,v):

Ns(u,v) =
∂

∂u s(u,v)× ∂
∂v s(u,v)∥∥∥ ∂

∂u s(u,v)× ∂
∂v s(u,v)

∥∥∥
2

. (9)

In order to obtain the normal of the displaced surface f (u,v),
its partial derivatives are computed:

∂
∂u

f (u,v) =
∂
∂u

s(u,v)+
∂
∂u

Ns(u,v)D(u,v)

+Ns(u,v)
∂
∂u

D(u,v),
(10)

∂
∂v f (u,v) is similar. Note that the derivatives of the displace-
ment function are a scaled version of sub-patch derivatives:

∂
∂u

D(u,v) = tileSize · ∂
∂ û

D̂(û, v̂). (11)

Further, ∂
∂u s(u,v) can be directly obtained from the base sur-

face. To find the derivative of Ns(u,v), the derivatives of the
(unnormalized) normal N∗

s (u,v) are found using the Wein-
garten equation [DC76] (E,F,G and e, f ,g are the coeffi-
cients of the first and second fundamental form):

∂
∂u

N∗
s (u,v) =

∂
∂u

s(u,v)
f F − eG
EG−F2 +

∂
∂v

s(u,v)
eF − f E
EG−F2 ,

(12)
∂
∂v N∗

s (u,v) is similar. From this, the derivative of the nor-
malized normal is found:

∂
∂u

Ns(u,v) =
∂

∂u N∗
s (u,v)−Ns(u,v)(∂

∂u N∗
s (u,v) ·Ns(u,v))

∥N∗
s (u,v)∥2

,

(13)
∂
∂v Ns(u,v) is similar. Finally, ∂

∂u f (u,v) is computed (analo-
gous to ∂

∂v f (u,v)) and thus N f (u,v).

Further, Nießner and Loop propose an approximate vari-
ant omitting the Weingarten term following Blinn [Bli78].
This is much faster from a rendering perspective and pro-
vides similar shading quality for small displacements.

Rendering surfaces with analytic displacements can be
trivially performed by employing the hardware tessellator.
The base surface s(u,v), its derivatives ∂

∂u s(u,v), ∂
∂ v s(u,v)

and the displacement function D(u,v) are evaluated in the
domain shader along with the derivatives of the normal
∂
∂u Ns(u,v), ∂

∂v Ns(u,v). These computations are used in or-
der to determine the vertices of the triangle mesh that are
generated by the tessellator. The vertex attributes computed
in the domain shader are then interpolated by hardware and
available in the pixel shader where the derivatives of the dis-
placement function ∂

∂u D(u,v) ∂
∂v D(u,v) are computed. This

allows computing the derivatives of the displaced surface
normal ∂

∂u f (u,v), ∂
∂v f (u,v) at each pixel independently pro-

viding per pixel surface normals for shading. Evaluating the
surface normal N f (u,v) on a per-vertex basis would degrade
rendering quality, due to interpolation artifacts.

c⃝ 2015 The Author(s)
c⃝ 2015 The Eurographics Association and Blackwell Publishing Ltd.

M. Nießner & B. Keinert & M. Fisher & M. Stamminger & C. Loop & H. Schäfer / Survey on Hardware Tessellation

texture analytic render arbitraryseamless mipmapping
access normals performance meshes

UV-Atlas − limited # − # �
UV-Atlas w. zippering [Cas08] � limited ## − ## �
Heightfields � � � only planar
Multires. Attributes [SPM∗13] � � − # �
Analytic Displacement [NL13] � � � quad dominant

Table 2: Comparison and properties of displacement mapping storage schemes (is best): uv-Atlas parameterizations
cannot fully hide displacement seams unless zippering is applied. Depending on the margin size between uv-boundaries only a
few mip-levels are supported until charts overlap. Texture access indicates the storage and lookup requirements to fetch the data
(e.g., one uv-coordinate per vertex for explicit parameterization vs. four uv-coordinates with zippering). Approaches providing
low-cost seam handling or direct normal evaluation from displacement are superior in performance due to fewer texture fetches.

5.5. Comparison of Texturing Methods

In Table 2, we compare texturing methods for storing and
accessing displacement data to classical uv-atlases. While
the zippering method allows using the existing textures to
hide seams, the memory footprint and rendering perfor-
mance is improved in the implicit parameterization schemes.
Methods providing analytic normals are superior in per-
formance although they are limited to planar and quad-
dominant meshes.

5.6. Dynamic Displacement and Editing

Dynamic displacement and editing are important in digital
content creation and for creating vivid virtual worlds in com-
puter games. For procedural displacement dynamics are eas-
ily achieved by animating parameters, e.g., to create the wa-
ter surface shown in Figure 19 in the Nvidia island example.

In the context of heightfields, Tatarchuk [Tat09] and
Yusov [Yus12] realize deformations on terrains by blend-
ing between two maps or splatting a predefined decal to the
heightfield texture. For multi-resolution heightfields this re-
quires updating all mip-levels.

The situation is more difficult when uv-atlas textures are
required, e.g., for models with a more complex topology in
digital content creation. In this context, artists would like in-
stant visual feedback during the design process while per-
forming sculpting and painting operations. Adding detail to
a model, e.g., wrinkles around the eye of a character, requires
sufficient texture samples in this area. Where artists decide
to add detail is unpredictable. This requires either the allo-
cation of texture samples globally for all faces in advance

Figure 19: Procedurally generated and animated water
(left) and base patches (red outline) after tessellation (right).

Figure 20: Dynamic memory management for tile-based tex-
tures enables highly-detailed displacement sculpting on tri-
angle meshes (with normal updates, left) and subdivision
surfaces (right) in real-time.

or performing texture resizing and re-sampling at run-time.
Both approaches have severe disadvantages: first, the avail-
able memory and texture size on the GPU is limited. This
restricts the number texture samples per face and thus the
ability to add local detail. Second, resizing the texture on
demand or allocating new face textures involves expensive
memory I/O between host and device.

Dynamic GPU Memory Management To overcome this
issue, Schäfer et al. [SKS13] propose a method for dynamic
memory management for the per-face texturing methods in
Section 5.4.1 and 5.4.2 that runs entirely on the GPU. The
idea is to independently pre-allocate face blocks from mesh
faces at different resolutions. At run-time these blocks are
dynamically assigned to mesh faces for storing detail when
editing the mesh. Providing a custom amount of face blocks
for each resolution allows for using higher-detail textures
on a subset of faces in contrast to global sample distribu-
tion. This makes the approach well-suited to applications
that demand varying sample densities on different regions of
a mesh. When more face blocks are requested than are avail-
able in the block pool, Schäfer et al. [SKNS14] either allo-
cate and attach new sets of face blocks to the block pool or
use a deallocation strategy in case the available GPU mem-
ory has been exhausted. First, for digital content creation
face blocks can be downloaded and stored to disk. The face

c⃝ 2015 The Author(s)
c⃝ 2015 The Eurographics Association and Blackwell Publishing Ltd.

M. Nießner & B. Keinert & M. Fisher & M. Stamminger & C. Loop & H. Schäfer / Survey on Hardware Tessellation

Figure 21: Deformation algorithm overview: subdivision
surfaces with quadratic B-Spline displacements are used as
deformable object representation (left). The voxelization of
the overlapping region is generated for an object penetrating
the deformable surface (center left). The displacement con-
trol points are pushed out of the voxelization (center right),
creating a surface capturing the impact (right).

block is then replaced with a lower resolution version and fi-
nally deallocated by writing its block index back to the mem-
ory pool. Second, for gaming scenarios they propose decay-
ing displacement over time, e.g., the imprint of a footstep,
before the block is deallocated.

In their experimental results, they report the handling
of local edits, including memory management and normal
re-computation (needed for the multiresolution attributes
scheme), in less than a millisecond, making this approach
well-suited to real-time content creation tools and games.
Figure 20 shows an example of the method for sculpting tri-
angle and subdivision surface models with complex geomet-
ric detail.

Real-Time Surface Deformation on Object Collisions An
essential aspect of dynamic scenes is the interaction between
scene objects. However, due to tight time budgets many real-
time applications support only rigid body collisions. In order
to enable visual feedback when collisions cause scratches
or other small surface deformations, materials like snow or
sand are typically augmented with dynamically placed decal
textures. However, decals are not able to modify the under-
lying surface geometry and therefore important visual cues
such as occlusion or shadowing effects are missing.

Schäfer et al. [SKN∗14] propose a real-time technique for
automatically applying fine-scale surface deformations on

Figure 22: Examples of real-time deformation method with
fine-scale surface deformations on object collisions. The
tracks of the car and barrels (left) are generated on-the-fly
by updating the surface displacement map using a voxeliza-
tion of the colliding objects as the user controls the car.

object collisions. The core idea is to approximate geometric
shapes with voxelizations, and apply deformations by dy-
namically updating displacement data. This is much more
cost-efficient than a physically-correct soft body or finite
element simulation, while providing visually plausible re-
sults. An overview of their technique is shown in Figure 21.
During simulation they first apply a coarse rigid body sim-
ulation on the CPU to detect collision between deformable
(e.g., a surface) and rigid objects. Deformable objects are
represented by displaced subdivision surfaces. For colliding
deformable-rigid object pairs they further process the defor-
mation on the GPU by first generating a proxy geometry of
the rigid object using a real-time binary voxelization as de-
picted in Figure 21 (center left). Then, they compute dis-
placement offsets on the deformable surface to match the
shape of the impact (Figure 21 center right and right). To
this end, rays are cast from the deformable object’s surface
in order to determine displacement updates.

Figure 22 shows an example of this deformation method
with high surface detail, where a car is deforming a snowy
surface. Processing times are between 0.1 and 0.2 ms per
colliding object on an NVIDIA GTX 780, making this ap-
proach suitable for real-time applications with many collid-
ing objects.

5.7. Displacement Acquisition

In order to recreate the shape of a detailed mesh from a tes-
sellated coarse mesh, the differences between both meshes
are sampled and stored in a displacement map. The follow-
ing methods are used in practice: surface offsets can be com-
puted by casting a ray from each texel’s position on the
coarse mesh in positive and negative normal direction and
measuring the closest-hit distance with the detailed geom-
etry. Unfortunately, the closest hit may not be the desired
intersection point. In the case of the detail mesh being cre-
ated from several subdivisions of the coarse mesh, each de-
tail patch maps to a subspace of coarse mesh patches. This
induces a direct mapping between both representations, en-
abling an easy transfer of detail to the displacement map.

Xia et al. [XGH∗11] overcome these problems and re-
strictions by presenting a method for transferring detail from
an arbitrary model to a semi-automatically created Catmull-
Clark mesh based on polycubes [THCM04, HWFQ09].
Given a detailed input mesh M and a user-created coarse
approximation P of the model consisting of equally sized
cubes, the user defines correspondences by painting strokes
on both meshes. A bijective map between both representa-
tions is found by computing a global distance field emerging
from stroke endpoints. The distance field induces a triangu-
lation on M and P. Therefore, positions inside each triangle
are uniquely defined by distances to the triangle corners in
M and P, resulting in a bijective map between both represen-
tations. With the polycube only consisting of square faces, a
texture atlas is created containing all boundary faces, with

c⃝ 2015 The Author(s)
c⃝ 2015 The Eurographics Association and Blackwell Publishing Ltd.

M. Nießner & B. Keinert & M. Fisher & M. Stamminger & C. Loop & H. Schäfer / Survey on Hardware Tessellation

faces between cubes omitted. Then, each chart in the texture
atlas is populated by sampling positions in the detailed mesh
using the distance field induced mapping between P and M.
Finally, the polycube mesh is converted to a Catmull-Clark
surface, that can then be rendered using methods outlined in
Section 3. Although some user input is required, the repo-
sitioning of strokes on the polycubes enables control over
distortions and assigned texture space of the resulting pa-
rameterization. The particular strength of this approach is
the ability to compute a bijective map between two arbitrary
meshes for transferring detail to a displacement map.

6. Patch Culling

On current hardware back-facing triangles are typically re-
moved from the pipeline (culled) to avoid unnecessary ras-
terization and pixel shading. The application of back-face
culling to geometry that is generated by GPU hardware tes-
sellation is also straightforward. However, if the plane nor-
mals of all generated triangles for a given surface patch point
away from the viewer, or patches are entirely occluded, con-
siderable amounts of computation are still wasted for sur-
face evaluation and triangle setup. In addition, view-frustum
culling can be applied efficiently on a per patch level to fur-
ther reduce patch tessellation and shading costs.

a

B

Pi

P'i

q

Figure 23: Construction of an anchored truncated cone from
the floating cone and the initial apex B: control points out-
side the initial cone are projected onto the bottom plane, the
apex of the truncated cone q is chosen such that the cone
contains all control points.

6.1. Back-patch Culling Techniques

6.1.1. Cone of Normals

Culling parametric patches can be achieved by computing a
cone of normals for surface patches. A conservative bound
of normals for a given parametric patch is defined by a cone
axis a, a cone apex L and an aperture angle α .

Shirmun and Abi-Ezzi [SAE93] introduce such a tech-
nique for Bézier patches. They compute corresponding nor-
mal patches with the help of the analytic surface derivatives
N(u,v) = ∂B(u,v)/∂u×∂B(u,v)/∂v. Hence, resulting nor-
mal patches are of degree (3du − 1,3dv − 1) in the ratio-
nal case, and of degree (2du −1,2dv −1) in the polynomial

case, where (du,dv) are the degrees of the original patch.
In the context of hardware tessellation, polynomial bi-cubic
patches with du = dv = 3 are commonly used.

Once the normal patch has been computed, the floating
cone is constructed. It contains all normal directions of the
original patch and is floating since it has no position, but
rather only an orientation. The goal is to find the smallest
enclosing sphere of a given set of (normalized) points in
space. While there are exact, albeit computationally expen-
sive, algorithms for its computation [Law65]), a practical so-
lution is to exploit the convex hull property of Bézier patches
and construct the corresponding bounding box (rather than
a sphere) of the normal tip points Ni. Therefore, a feasible
guess for the cone axis a is

a =
1
2

max

i
Nix −min

i
Nix

max
i

Niy −min
i

Niy

max
i

Niz −min
i

Niz

with a corresponding aperture angle α given by cos(α) =
min

i
(a ·ni) where ni are the normals at patch control points.

Note that the cone may be undefined if α > π/2.

Once the floating cone is constructed, it has to be trans-
lated in order to contain the patch itself; i.e., include the
patch control points. Such a cone is called an anchored
truncated cone. First, a bottom control point B with re-
spect to a is computed B = Pi, with i given by min

i
(a ·Pi).

An analogous point T on the top plane is also computed.
Thus, the cone bottom plane is defined by (B− x) · a = 0.
Second, every control point Pi is checked for enclosure
in the translated cone. Points outside the cone are pro-
jected to the bottom plane. Projected points P′

i are then
given by BP′

i = r(BPi − ha), with h = BPi · a, and r =(√
∥BPi∥2 −h2 −h tan(α)

)
/
√

∥BPi∥2 −h2. Upon apply-
ing this operation for all control points, the cone can be
bounded on the bottom plane by the projected bounding
box as shown in Figure 23. Finally, the top plane of the
cone is determined analogously, which results in a bound-
ing radius for both planes rb (bottom plane) and rt (top
plane), and a center of gravity c of projected points on the
bottom plane. The cone apex q of the cone containing all
control points and normals is then given by q = c − (rb ·
(cos(α)/sin(α))) · a+B. This provides the distance from
the control points to the bottom and top plane dt = a ·T−a ·q
and db = a ·B−a ·q. The distance z from the bottom plane to
the front plane cone apex L is then given by z = db · tan2(α),
and leads directly to L = q+ a · (db − z). The distance to
the top plane y = dt · tan2(α) and the back plane cone apex
F = q+a · (dt − y) is provided accordingly (see Figure 24).

Given the cone of normals, culling for a given camera
point E can be easily performed. First, normalized view-
ing directions are computed in respect to the cone apexes
Vb = (E−F)/∥E−F∥2 and Vt = (E−L)/∥E−L∥2.

c⃝ 2015 The Author(s)
c⃝ 2015 The Eurographics Association and Blackwell Publishing Ltd.

M. Nießner & B. Keinert & M. Fisher & M. Stamminger & C. Loop & H. Schäfer / Survey on Hardware Tessellation

F

L

a

q

Figure 24: Illustration of front facing (green) and back fac-
ing (red) regions of a cone’s cross-section through its axis a.
The apices of the back respectively front facing region are F
and L, whereas q is the cone apex of the cone of normals.

In the case where a ·Vb ≥ sin(α), the cone is back-facing
and can thus be culled. Fully front-facing patches are identi-
fied if a ·Vt ≤ −sin(α). Otherwise, the patch is considered
to be a silhouette containing front- as well as back-facing
regions.

6.1.2. Approximate Cone of Normals

While the cone of normals technique provides relatively
tight bounds, having to compute the normal patches is costly.
Munkberg et al. [MHTAM10] propose an approximation of
the cone of normals, which relies on a tangent and bi-tangent
cone following Sederberg and Meyers [SM88].

The first step of their approach is to efficiently deter-
mine a cone axis a, which is simply approximated by the
four patch corner points a = ((P0n −P00)+(Pnn −Pn0))×
((Pn0 −P00)+(Pnn −P0n)). Note that the cone axis is also
considered to be normalized. Next, aperture angles αu and
αv of the tangent ∂B(u,v)/∂u and bi-tangent ∂B(u,v)/∂v
patches, respectively, are derived by employing the convex
hull property of the derivative Bézier patches. The angles of
the tangent and bi-tangent cones are then combined in order
to compute the cone angle α [SM88]:

sin(α) =

√
sin2(αu)+2sin(αu)sin(αv)cos(β)+ sin2(αv)

sin(β)
,

(14)
where β is the smallest of the two angles between the u and
v directions used to construct a. Given the cone axis a and
the aperture α , patch culling is conducted the same way as
described in Section 6.1.1.

6.1.3. Parametric Tangent Plane

Another way to perform patch culling is to consider
the parametric tangent plane as proposed by Loop et
al. [LNE11]. The parametric tangent plane T (u,v) of a

Bézier patch (also applicable to other polynomial patch
types) B(u,v) satisfies B(u,v)

∂
∂u B(u,v)
∂
∂v B(u,v)

 ·T (u,v) =

 0
0
0

 .

Thus, T (u,v) can be directly computed as

T (u,v) = cross4
(

B(u,v), ∂
∂u B(u,v), ∂

∂v B(u,v)
)
, (15)

where cross4() is the generalized cross product of 3 vectors
in R4. For bi-cubic B(u,v), the parametric tangent plane is a
polynomial of bi-degree 7, written in Bézier form as

T (u,v) = B7(u) ·

t00 t01 · · · t06 t07
t08 t09 · · · t14 t15
...

...
. . .

...
...

t48 t49 · · · t54 t55
t56 t57 · · · t62 t63

 ·B7(v),

where the ti form an 8× 8 array of control planes. Each
ti results from a weighted sum of cross4() products among
the patch control points of B(u,v). Note that T (u,v), being
of bi-degree 7, is one less in both parametric directions than
expected from adding the polynomial degrees of inputs to
the equation.

The next step is to employ the parametric tangent plane
for visibility classification; i.e., determining whether a patch
is front-facing, back-facing, or silhouette with respect to the
eye point. The visibility for a patch B(u,v) is classified by us-
ing its parametric tangent plane T (u,v), u,v ∈ [0,1]2, with
respect to the homogeneous eye point e using the continuous
visibility function:

CVis(B,e) =

back-facing, if (e ·T (u,v) < 0),
front-facing, if (e ·T (u,v) > 0),
silhouette, otherwise.

Computing CVis(B,e) precisely will require costly iterative
techniques to determine the roots of a bivariate polynomial.
Instead, Loop et al. [LNE11] suggest a more practical dis-
crete variant based on the Bézier convex hull of the scalar
valued patch

e ·T (u,v) = B7(u)·

e · t0 e · t1 · · · e · t6 e · t7
e · t8 e · t9 · · · e · t14 e · t15

...
...

. . .
...

...
e · t48 e · t49 · · · e · t54 e · t55
e · t56 e · t57 · · · e · t62 e · t63

·B
7(v).

Patch visibility classification reduces to counting the num-
ber of negative values, Ncnt, produced by taking the 64 dot
products e · ti using the discrete visibility function:

DVis(B,e) =

back-facing, if (Ncnt = 64) ,
front-facing, if (Ncnt = 0) ,
silhouette, otherwise.

The classification produced by DVis(B,e) is then a conser-
vative approximation of CVis(B,e). Therefore, it is possible

c⃝ 2015 The Author(s)
c⃝ 2015 The Eurographics Association and Blackwell Publishing Ltd.

M. Nießner & B. Keinert & M. Fisher & M. Stamminger & C. Loop & H. Schäfer / Survey on Hardware Tessellation

NoCull NCone TCone PPlane

0

5

10

15

20

25

30

1 16 32

ms

ms

tessellation factor

Figure 25: Comparison of back-patch culling strategies applied to the Killeroo model shown left, which is composed of 11532
Bézier patches. For each comparison, wasted computations are visualized; i.e., areas processed by the tessellator with back-
facing surface normals (less area is better). The cone of normals [SAE93] (NCone, 3697 patches culled) is effective, but costly
for dynamic scenes. Its approximation from tangent and bi-tangent cones is faster to compute, but less precise [SM88] (TCone,
only 2621 patches culled). Parametric tangent planes are faster than the cone of normals, and more effective [LNE11] (PPlane,
4604 patches culled). The comparison in rendering times in milliseconds is shown on the right for different tessellation factors.

for DVis(B,e) to classify a front- or back-facing patch as
a silhouette in error. Loop et al. [LNE11] also provide an
efficiently parallelized version to compute and evaluate the
parametric tangent plane on the GPU.

6.1.4. Summary

Back-patch culling approaches are evaluated using the Sim-
pleBezier example from the DirectX 11 SDK running on an
NVIDIA GTX 480. It is most efficient to implement culling
tests in a separate compute shader then feed the decision
into the constant hull shader. The number of culled patches
is determined for 10K random views to obtain a meaning-
ful metric for the effectiveness of back-patch culling. Cor-
responding average cull rates for three popular models are
listed in Table 3. Results are shown for the accurate cone
of normals (NCONE), the approximate cone of normals
(TCONE), and the parametric tangent plane (PPLANE) ap-
proach. PPLANE requires 0.76 ms per frame to cull 4604
patches. This is faster than NCONE, which needs 0.86 ms
to cull 3697 patches. For tessellation factors larger than 8,
the additional cull precision pays off, and PPLANE’s time
per frame is lower than TCONE, which needs 0.36 ms, but
only culls 2621 patches. While TCONE provides the lowest
culling rates, it is computationally the fastest. The computa-
tion costs and culling rates of NCONE are between TCONE

and PPLANE. PPLANE performs the most accurate culling,
and is the best method for highly-tessellated surfaces. Note
that PPLANE does not provide a normal approximation as
a side product, which is useful in some scenarios (e.g., for
occlusion and view-frustum culling; cf. Section 6.2). In al-
most every scenario (i.e., tessellation factors greater than 4),
back-patch culling comes out ahead, making it beneficial to
many real-time applications. A visualization of culling re-
sults and corresponding frame render timings for a represen-
tative view is shown in Figure 25. In this example, all meshes
are fully dynamic and skinned, thus vertices are updated ev-

ery frame. In the case of rigid models, culling computations
can be partly pre-calculated and cached. For instance, a nor-
mal cone can be pre-computed for every patch, leaving only
a dot product evaluation at runtime for the culling test. An
equivalent option for static models exists for PPLANE.

6.2. Patch-based Occlusion Culling

A general drawback to back-patch culling methods is
the inability to address displaced patches. Hasselgren et
al. [HMAM09] attempt to tackle this problem by introducing
a Taylor expansion and applying interval arithmetic. This in-
volves significant computational overhead and restricts dy-
namic tessellation densities. Nießner and Loop [NL12] in-
troduce a culling method based on occlusion information to
overcome this limitation.

Occlusion Culling Pipeline Patch-based occlusion culling
works by maintaining visibility status bits (visible, occluded,
or newly-visible) of individual patches as each frame is ren-
dered. Assume that a frame has already been rendered and
these status bits have been assigned to patches. At the begin-
ning of a new frame, patches marked as visible are rendered.
From the Z-buffer of this frame, a hierarchical Z-buffer (or

Big Guy Monster Frog Killeroo
(3570) (5168) (11532)

TCONE 1260 (35%) 1911 (37%) 3790 (33%)
NCONE 1601 (45%) 2286 (44%) 4685 (40%)
PPLANE 1729 (48%) 2478 (48%) 5206 (45%)

Table 3: Average cull rates of different culling approaches:
the accurate cone of normals [SAE93] (NCONE), the ap-
proximate cone of normals [SM88] (TCONE), and the para-
metric tangent plane [LNE11] (PPLANE).

c⃝ 2015 The Author(s)
c⃝ 2015 The Eurographics Association and Blackwell Publishing Ltd.

M. Nießner & B. Keinert & M. Fisher & M. Stamminger & C. Loop & H. Schäfer / Survey on Hardware Tessellation

Figure 26: Different bounding methods for displaced sur-
faces visualizing object (purple) and screen space (black
quads) bounds: OBB (object-oriented bounding box [MH-
TAM10]), CAF (camera aligned frustum [NL12]) and a
comparison between OBB (red) and CAF (blue); both using
the same, approximate cone of normals.

Hi-Z map) [GKM93] is built using a compute shader (or
CUDA kernel). Next, all patches are occlusion tested against
the newly-constructed Hi-Z map. Patches passing this test
(i.e., not occluded) are either marked as visible if they were
previously visible, or newly-visible if they were previously
occluded; otherwise they are marked as occluded. Finally,
all patches marked as newly-visible and visible are rendered
to complete the frame.

Computing Occlusion Data In order to obtain occlusion
information, the depth buffer resulting from rendering the
visible patches is used to generate a Hi-Z map [GKM93],
[SBOT08]. The Hi-Z map construction is similar to standard
mipmapping where four texels are combined to determine a
single texel in the next mip level. Instead of averaging texels,
the value of the new texel is set to the maximum depth of
the corresponding four child texels. Thus, within a region
covered by a particular texel (no matter which mip level) a
conservative bound is given, such that no objects with larger
distance to the observer are visible at the texel’s location.

Occlusion Cull Decision Nießner and Loop [NL12] use bi-
cubic Bézier patches as a representative patch primitive, but
the approach could be applied to other patching schemes as
well. In order to determine the visibility of a patch, its axis-
aligned bounding box (AABB) is computed in clip space.
The AABB’s front plane is then tested against the Hi-Z
map. Depending on the bounding box width and height in
screen space, a particular level of the Hi-Z map is chosen:
level = ⌈log2(max(width,height))⌉. The bounding box area
is conservatively covered by at most 4 texels of the selected
Hi-Z map level. Considering multiple Hi-Z map entries al-
lows for achieving better coverage.

Occlusion Culling of Displaced Patches Computation of
occlusion information is the same for patches with and with-
out displacements. One way to bound displaced patches is
to extend patch OBBs with respect to patch displacements
and corresponding patch normals [MHTAM10]. Tighter
patch bounds are obtained when applying a camera-aligned
frustum (CAF) [NL12]. A CAF is a frustum whose side

(a) 5.7 vs 12.1 ms (b) 3.4 vs 9.0 ms

Figure 27: Patch-based occlusion culling [NL12] performed
on per-patch basis: of patches with and without displace-
ments. The images above are rendered with culling disabled
and enabled; performance gains are below the respective
image. (a) 64.2% patches culled, (b) 70.6% patches culled.

planes contain the origin in camera space, which corre-
sponds to the eye point in viewing space. Figure 26 shows
the difference between OBB bounds [MHTAM10] and CAF
bounds [NL12] using the same cone of normals to bound the
displaced patches.

6.2.1. Summary

Similar to back-patch culling, computations for occlusion
culling on current GPUs can be most efficiently obtained in
a separate compute shader. Resulting culling decisions are
then read by the hull shader, and patch tessellation factors
are set to zero for culled patches.

Occlusion Culling within Individual Objects Since
culling is performed on a per-patch basis, it can be applied
to individual models and ignore occluded patches. In or-
der to obtain meaningful culling rate measurements, aver-
age culling rates are determined using 1K different cameras
views and models with and without displacement. Each view
contains the entire object to prevent view frustum culling in-
fluencing the measurements.

Occlusion culling for non-displaced models is tested on
the Killeroo and Big Guy model, achieving an average
culling rate of 27.9% and 26.76%, respectively. In contrast,
the best back-patch culling algorithm [LNE11] culls 38.7%
and 37.8% of the patches. However, occlusion culling de-
tects and culls significantly more patches with increased
depth complexity since back-patch culling algorithms can-
not take advantage of inter object/patch occlusions.

Occlusion culling for models with displacements is tested
on the Monster Frog and the Cow Carcass model. Corre-
sponding culling rates for different cull kernels are shown in
Table 4. The camera-aligned frustum (CAF) is always more
effective than the object-oriented bounding box (OBB) as it
provides tighter space bounds. Both approaches involve the
same computational cost.

General Occlusion Culling for Scenes Realistic applica-
tions involve scenes with multiple objects consisting of both

c⃝ 2015 The Author(s)
c⃝ 2015 The Eurographics Association and Blackwell Publishing Ltd.

M. Nießner & B. Keinert & M. Fisher & M. Stamminger & C. Loop & H. Schäfer / Survey on Hardware Tessellation

(a) (b) (c) (d)

Figure 28: Visualizing collision detection for dynamically tessellated objects. The Monster Frog is moving towards the Chin-
chilla (a). At one point the OBBs of both objects intersect (b, red box) and the containing geometry is voxelized (c). This
provides a collision point and corresponding surface normals (d). Patches shown in the last image could not be culled against
the intersecting OBB and thus are potential collision candidates contributing to the voxelization.

triangle and patch meshes. Two simple example scenes are
shown in Figure 27 (the ACoN kernel is used for dis-
placed models). In the first scene containing 27K patches a
culling rate of 64.2% for the view shown in Figures 27(a) is
achieved. Rendering is sped up by a factor of 2.1 (using a tes-
sellation factor of 16). As expected, higher depth complexity
results in more patches to be culled. Occlusion culling also
benefits from triangle mesh occluders as shown in the second
test scene (5.5K patches and 156 triangles). A culling rate of
70.6% is achieved for the view shown in Figure 27(b). As
a result, render time is reduced by a factor of 2.6 (using a
tessellation factor of 32).

OBB CAF

ACoN CoN ACoN CoN

Frog 12.1% 14.0% 17.0% 18.4%
Frog2 25.1% 26.4% 29.4% 30.9%
Cow 14.1% 15.6% 17.6% 18.7%
Cow2 27.9% 29.1% 31.2% 32.7%

Table 4: Average occlusion culling rates for displaced mod-
els; 2 denotes the respective model after one level of subdi-
vision (i.e., four times more patches). While OBB performs
occlusion culling using the bounds by [MHTAM10], CAF
uses the camera-aligned frustum by [NL12]. ACON and
CON refer to the approximate and accurate cone of normal
variant.

Overall, patch-based occlusion culling significantly re-
duces tessellation and shading work load allowing for faster
rendering. In contrast to back-patch culling approaches, the
culling rate on single objects is slightly lower. However,
occlusion culling is capable of handling displaced objects
which are widely used in the context of hardware tessellation
with increased effectiveness at higher depth complexities.

7. Collision Detection for Hardware Tessellation

Collision detection for hardware tessellation is particularly
challenging since surface geometry is generated on-the-fly,
based on dynamic tessellation factors and displacement val-
ues. Ideally, the same geometry used for rendering should

be also taken into account to simulate physics. Nießner et
al. [NSSL13] propose such an approach which provides col-
lision results for dynamic objects directly on the GPU. The
key idea is to detect collisions using voxelized approxima-
tions of hardware generated, possibly displaced and ani-
mated, detail geometry.

Collision Candidates The first step of the algorithm is to
identify potential collision candidates. Therefore, object ori-
ented bounding boxes (OBBs) are computed, and each ob-
ject pair is tested for the corresponding OBB intersection. If
there is no intersection, there can be no collision (early exit).
Otherwise, a shared intersection volume between the two re-
spective objects is defined. Next, a compute kernel is used to
determine patches that are included in the shared volumes.
In order to account for patch displacements, the cone of nor-
mals techniques, [SAE93] (accurate cone) or [SM88] (ap-
proximate cone), is used. Computing corresponding patch
bounds is similar to patch-based occlusion culling [NL12].

Voxelization The core idea of the collision test is to vox-
elize the rendering geometry of the current frame. In this
stage, only patches that were identified as collision candi-
dates are considered in order to improve performance. These
are all transformed into the space of the intersecting volume,
which is used as a basis for a binary voxelization. Inside
patches are then voxelized using a modified version of the
practical algorithm by Schwarz [Sch12].

Collision Detection Collision detection is based on the bi-
nary voxelizations, which are obtained every frame for each
non-zero shared volume of all object pairs. Given two solid
voxelizations, embedded in a shared space, collisions are de-
tected by pairwise voxel comparisons. Since voxel represen-
tations are binary, 32 voxel comparisons can be performed
using a single bitwise AND-operation. In addition to colli-
sion positions, corresponding surface normals are obtained
based on voxel neighborhoods, i.e., normals are derived by
using the weighted average of the vectors between the cur-
rent voxel and its 26 neighbors. This test may be extended

c⃝ 2015 The Author(s)
c⃝ 2015 The Eurographics Association and Blackwell Publishing Ltd.

M. Nießner & B. Keinert & M. Fisher & M. Stamminger & C. Loop & H. Schäfer / Survey on Hardware Tessellation

by an additional pass to determine patch IDs and u,v coordi-
nates of collision points.

Figure 28 shows how collision detection is applied to a
simple test scene with two objects. Computational overhead
is well below a millisecond.

8. Conclusion

In this survey, we provide an overview of state-of-the-art
rendering techniques for hardware tessellation. By support-
ing programmable geometric amplification, the hardware
tessellator enables real-time applications to efficiently ren-
der surfaces with very high geometric detail. We have cov-
ered ways to transform traditional surface representations so
that they are amenable to the hardware tessellation pipeline.
Many of these methods have already found application in
industry; e.g., Pixar’s Open Subdiv [Pix12], which is based
on [NLMD12], is now part of various authoring tools such
as Autodesk Maya. We believe future generations of video
games and authoring tools will continue to benefit from the
massively parallel hardware tessellation architecture.

Many of the ideas we have covered follow a common
theme, where approaches that have proven successful in of-
fline, production-quality rendering applications are adapted
and re-purposed to the hardware tessellation pipeline. These
ideas include exact handling of semi-sharp creases [Nie13],
DiagSplit [FFB∗09] and FracSplit [LPD14], both based on
the Reyes split-dice pipeline, and tile-based displacement
textures [NL13], which can be seen as a GPU analog of
Ptex [BL08]. Moving forward, research in this area seeks to
allow artists and developers to use the expensive techniques
and representations present in content authoring tools and
achieve fast, high-quality, and artifact-free renderings of this
content in real-time applications.

We hope this survey will inspire future research in this ex-
citing area. Hardware vendors are currently working on tes-
sellation support in next-generation mobile graphics proces-
sors [Nvi13], [Qua13]. This will greatly widen the range of
applications of the algorithms presented in this survey; given
the power and memory constraints of mobile hardware, fu-
ture research could include novel displacement storage and
(de)compression schemes to reduce memory consumption,
or tessellation algorithms with less computational overhead,
e.g., refraining from fractional tessellation while still provid-
ing continuous level-of-detail rendering.

References
[AB06] ANDREWS J., BAKER N.: Xbox 360 System Architec-

ture. IEEE Micro 26, 2 (2006), 25–37. 0

[BA08] BOUBEKEUR T., ALEXA M.: Phong Tessellation. ACM
Trans. Graph. 27, 5 (2008), 141:1–141:5. 1

[Ber04] BERTRAM M.: Lifting Biorthogonal B-spline Wavelets.
In Geometric Modeling for Scientific Visualization. Springer,
2004, pp. 153–169. 13

[BL08] BURLEY B., LACEWELL D.: Ptex: Per-Face Texture
Mapping for Production Rendering. In Proceedings of EGSR
(2008), pp. 1155–1164. 12, 13, 22

[Bli78] BLINN J. F.: Simulation of Wrinkled Surfaces. Computer
Graphics (Proceedings of SIGGRAPH) 12, 3 (1978), 286–292. 9,
14

[Bon11] BONAVENTURA X.: Terrain and Ocean Rendering with
Hardware Tessellation. In GPU Pro 2. A K Peters, 2011, pp. 3–
14. 11

[BS02] BOLZ J., SCHRÖDER P.: Rapid evaluation of Catmull-
Clark subdivision surfaces. In Proceedings of the International
Conference on 3D Web Technology (2002), ACM, pp. 11–17. 4

[BS05] BOUBEKEUR T., SCHLICK C.: Generic Mesh Refinement
on GPU. In Proceedings of HWWS (2005), ACM, pp. 99–104. 1

[BS08] BOUBEKEUR T., SCHLICK C.: A Flexible Kernel for
Adaptive Mesh Refinement on GPU. Computer Graphics Forum
27, 1 (2008), 102–114. 1

[Can11] CANTLAY I.: DirectX 11 Terrain Tessellation. Nvidia
whitepaper, 2011. 8, 11

[Cas08] CASTAÑO I.: Next-Generation Rendering of Subdivision
Surfaces. Talk at SIGGRAPH 08, 2008. 10, 15

[CC78] CATMULL E., CLARK J.: Recursively Generated B-
Spline Surfaces on Arbitrary Topology Meshes. Computer-Aided
Design 10, 6 (1978), 350–355. 4

[CCC87] COOK R. L., CARPENTER L., CATMULL E.: The
Reyes Image Rendering Architecture. Computer Graphics (Pro-
ceedings of SIGGRAPH) 21, 4 (1987), 95–102. 9

[CH02] CARR N. A., HART J. C.: Meshed Atlases for Real-Time
Procedural Solid Texturing. ACM Trans. Graph. 21, 2 (2002),
106–131. 12

[CH04] CARR N. A., HART J. C.: Painting Detail. ACM Trans.
Graph. 23, 3 (2004), 845–852. 10

[CHCH06] CARR N. A., HOBEROCK J., CRANE K., HART
J. C.: Rectangular Multi-Chart Geometry Images. In Proc.
SGP’06 (2006), pp. 181–190. 10

[Coo84] COOK R.: Shade Trees. Computer Graphics (Proceed-
ings of SIGGRAPH) 18, 3 (1984), 223–231. 9

[DC76] DO CARMO M.: Differential Geometry of Curves and
Surfaces, vol. 1. Prentice-Hall, 1976. 14

[DKT98] DEROSE T., KASS M., TRUONG T.: Subdivision Sur-
faces in Character Animation. In Proceedings of SIGGRAPH 98
(1998), Annual Conference Series, ACM, pp. 85–94. 4

[DS78] DOO D., SABIN M.: Behaviour of Recursive Division
Surfaces near Extraordinary Points. Computer-Aided Design 10,
6 (1978), 356–360. 13, 14

[EML09] EISENACHER C., MEYER Q., LOOP C.: Real-Time
View-Dependent Rendering of Parametric Surfaces. In Proceed-
ings of I3D’09 (2009), pp. 137–143. 1

[FFB∗09] FISHER M., FATAHALIAN K., BOULOS S., AKELEY
K., MARK W., HANRAHAN P.: DiagSplit: Parallel, Crack-Free,
Adaptive Tessellation for Micropolygon Rendering. ACM Trans.
Graph 28, 5 (2009), 150. 1, 9, 22

[FH05] FLOATER M. S., HORMANN K.: Surface Parameteriza-
tion: A Tutorial and Survey. In Advances in Multiresolution for
Geometric Modelling. Springer, 2005, pp. 157–186. 10

[GKM93] GREENE N., KASS M., MILLER G.: Hierarchical Z-
Buffer Visibility. In Proceedings of SIGGRAPH (1993), Annual
Conference Series, ACM, pp. 231–238. 20

c⃝ 2015 The Author(s)
c⃝ 2015 The Eurographics Association and Blackwell Publishing Ltd.

M. Nießner & B. Keinert & M. Fisher & M. Stamminger & C. Loop & H. Schäfer / Survey on Hardware Tessellation

[Gol91] GOLDBERG D.: What Every Computer Scientist Should
Know About Floating-point Arithmetic. ACM Comput. Surv. 23,
1 (Mar. 1991), 5–48. 10

[GP09] GONZÁLEZ F., PATOW G.: Continuity Mapping for
Multi-Chart Textures. ACM Trans. Graph. 28 (2009), 109:1–
109:8. 10

[Gre74] GREGORY J.: Smooth Interpolation without Twist Con-
straints. Computer Aided Geometric Design (1974), 71–87. 6

[HDD∗94] HOPPE H., DEROSE T., DUCHAMP T., HALSTEAD
M., JIN H., MCDONALD J., SCHWEITZER J., STUETZLE W.:
Piecewise Smooth Surface Reconstruction. In Proceedings of
SIGGRAPH (1994), ACM, pp. 295–302. 4

[HFN∗14] HUANG Y.-C., FENG J.-Q., NIESSNER M., CUI Y.-
M., YANG B.: Feature-Adaptive Rendering of Loop Subdivision
Surfaces on Modern GPUs. Journal of Computer Science and
Technology 29, 6 (2014), 1014–1025. 8

[HLS12] HE L., LOOP C., SCHAEFER S.: Improving the Pa-
rameterization of Approximate Subdivision Surfaces. Computer
Graphics Forum 31, 7 (2012), 2127–2134. 6

[HMAM09] HASSELGREN J., MUNKBERG J., AKENINE-
MÖLLER T.: Automatic Pre-Tessellation Culling. ACM Trans.
Graph. 28, 2 (2009), 19. 19

[HWFQ09] HE Y., WANG H., FU C.-W., QIN H.: A Divide-and-
Conquer Approach for Automatic Polycube Map Construction.
Computers & Graphics 33, 3 (2009), 369–380. 16

[JH12] JANG H., HAN J.: Feature-Preserving Displacement Map-
ping with Graphics Processing Unit (GPU) Tessellation. Com-
puter Graphics Forum 31, 6 (2012), 1880–1894. 11

[JH13] JANG H., HAN J.: GPU-optimized indirect scalar dis-
placement mapping. Computer-Aided Design 45, 2 (2013), 517–
522. 11

[KMDZ09] KOVACS D., MITCHELL J., DRONE S., ZORIN D.:
Real-Time Creased Approximate Subdivision Surfaces. In Pro-
ceedings of I3D’09 (2009), ACM, pp. 155–160. 6

[Law65] LAWSON C.: The Smallest Covering Cone or Sphere.
SIAM Review 7, 3 (1965), 415–416. 17

[LH06] LEFEBVRE S., HOPPE H.: Appearance-Space Texture
Synthesis. ACM Trans. Graph. 25, 3 (2006), 541–548. 10

[Lin68] LINDENMAYER A.: Mathematical Models for Cellular
Interactions in Development I. Filaments with one-sided Inputs.
Journal of Theoretical Biology 18, 3 (1968), 280–299. 11

[LNE11] LOOP C., NIESSNER M., EISENACHER C.: Effective
Back-Patch Culling for Hardware Tessellation. Proceedings of
Vision, Modeling, and Visualization (2011), 263–268. 18, 19, 20

[Loo87] LOOP C.: Smooth Subdivision Surfaces Based On Trian-
gles. Master’s thesis, University of Utah, 1987. 8

[LP01] LUTTERKORT D., PETERS J.: Optimized Refinable En-
closures of Multivariate Polynomial Pieces. Computer Aided Ge-
ometric Design 18, 9 (2001), 851–863. 9

[LPD14] LIKTOR G., PAN M., DACHSBACHER C.: Fractional
Reyes-Style Adaptive Tessellation for Continuous Level of De-
tail. Computer Graphics Forum 33, 7 (2014), 191–198. 9, 22

[LPRM02] LÉVY B., PETITJEAN S., RAY N., MAILLOT J.:
Least Squares Conformal Maps for Automatic Texture Atlas
Generation. ACM Trans. Graph. 21, 3 (2002), 362–371. 10

[LS08] LOOP C., SCHAEFER S.: Approximating Catmull-Clark
subdivision surfaces with bicubic patches. ACM Trans. Graph.
27, 1 (2008), 8. 5

[LSNC09] LOOP C., SCHAEFER S., NI T., CASTAÑO I.: Ap-
proximating Subdivision Surfaces with Gregory Patches for
Hardware Tessellation. ACM Trans. Graph. 28 (2009), 151:1–
151:9. 6

[Mar95] MARUYA M.: Generating a Texture Map from Object-
Surface Texture Data. Computer Graphics Forum 14, 3 (1995),
397–405. 12

[MBG∗12] MARVIE J.-E., BURON C., GAUTRON P., HIRTZLIN
P., SOURIMANT G.: GPU Shape Grammars. Computer Graphics
Forum 31, 7 (2012), 2087–2095. 12

[MHTAM10] MUNKBERG J., HASSELGREN J., TOTH R.,
AKENINE-MÖLLER T.: Efficient Bounding of Displaced Bézier
Patches. In Proceedings of HPG’10 (2010), Eurographics Asso-
ciation, pp. 153–162. 18, 20, 21

[Mic09] MICROSOFT CORPORATION: Direct3D 11 Features,
2009. http://msdn.microsoft.com/en-us/library/ff476342(VS.85)
.aspx. 0, 1

[MNP08] MYLES A., NI T., PETERS J.: Fast Parallel Construc-
tion of Smooth Surfaces from Meshes with Tri/Quad/Pent Facets.
Computer Graphics Forum 27, 5 (2008), 1365–1372. 6

[Mor01] MORETON H.: Watertight Tessellation using Forward
Differencing. In HWWS’01: Proceedings of the ACM SIG-
GRAPH/EUROGRAPHICS Workshop on Graphics Hardware
(2001), pp. 25–32. 8

[MYP08] MYLES A., YEO Y. I., PETERS J.: GPU Conversion of
Quad Meshes to Smooth Surfaces. In SPM ’08: ACM Symposium
on Solid and Physical Modeling (2008), pp. 321–326. 6

[Nie13] NIESSNER M.: Rendering Subdivision Surfaces using
Hardware Tessellation. Dr. Hut, 2013. 6, 22

[NL12] NIESSNER M., LOOP C.: Patch-Based Occlusion Culling
for Hardware Tessellation. CGI (2012). 19, 20, 21

[NL13] NIESSNER M., LOOP C.: Analytic Displacement Map-
ping using Hardware Tessellation. ACM Trans. Graph. 32, 3
(2013), 26. 8, 13, 15, 22

[NLG12] NIESSNER M., LOOP C., GREINER G.: Efficient Eval-
uation of Semi-Smooth Creases in Catmull-Clark Subdivision
Surfaces. Computer Graphics Forum (2012). 8

[NLMD12] NIESSNER M., LOOP C., MEYER M., DEROSE T.:
Feature-adaptive GPU rendering of Catmull-Clark subdivision
surfaces. ACM Trans. Graph. 31, 1 (2012), 6. 4, 6, 8, 14, 22

[NSSL13] NIESSNER M., SIEGL C., SCHÄFER H., LOOP C.:
Real-time Collision Detection for Dynamic Hardware Tessellated
Objects. In Proc. EG’13 (2013). 21

[Nvi12a] NVIDIA: CUDA C Programming guide, 2012. 0

[Nvi12b] NVIDIA: NVIDIA’s Next Generation CUDA Compute
Architecture: Kepler GK110, 2012. http://www.nvidia.com/
content/pdf/kepler/nvidia-kepler-gk110-architecture-white
paper.pdf. 1

[Nvi13] NVIDIA: Kepler to Mobile, 2013. http://blogs.nvidia.com
/blog/2013/07/24/kepler-to-mobile. 1, 22

[NYM∗08] NI T., YEO Y. I., MYLES A., GOEL V., PETERS J.:
GPU Smoothing of Quad Meshes. In SMI ’08: IEEE Interna-
tional Conference on Shape Modeling and Applications (2008),
pp. 3–9. 6

[PCK04] PURNOMO B., COHEN J. D., KUMAR S.: Seam-
less Texture Atlases. In Proceedings of SGP’04 (2004), ACM,
pp. 65–74. 10

[PEO09] PATNEY A., EBEIDA M., OWENS J.: Parallel View-
Dependent Tessellation of Catmull-Clark Subdivision Surfaces.
In Proceedings of HPG (2009), ACM, pp. 99–108. 1

c⃝ 2015 The Author(s)
c⃝ 2015 The Eurographics Association and Blackwell Publishing Ltd.

http://msdn.microsoft.com/en-us/library/ff476342(VS.85).aspx
http://msdn.microsoft.com/en-us/library/ff476342(VS.85).aspx
http://www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf
http://www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf
http://www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf
http://blogs.nvidia.com/blog/2013/07/24/kepler-to-mobile
http://blogs.nvidia.com/blog/2013/07/24/kepler-to-mobile

M. Nießner & B. Keinert & M. Fisher & M. Stamminger & C. Loop & H. Schäfer / Survey on Hardware Tessellation

[PG07] PAJAROLA R., GOBBETTI E.: Survey of Semi-Regular
Multiresolution Models for Interactive Terrain Rendering. The
Visual Computer 23, 8 (2007), 583–605. 11

[Pix12] PIXAR: OpenSubdiv, 2012. http://graphics.pixar.com/
opensubdiv. 0, 6, 22

[Qua13] QUALCOMM: Qualcomm Technologies Announces
Next Generation Qualcomm Snapdragon 805, 2013.
http://www.qualcomm.com/media/releases/2013/11/20/qual
comm-technologies-announces-next-generation-qualcomm-
snapdragon-805. 1, 22

[Rei97] REIF U.: A Refineable Space of Smooth Spline Surfaces
of Arbitrary Topological Genus. Journal of Approximation The-
ory 90, 2 (1997), 174–199. 13, 14

[RNLL10] RAY N., NIVOLIERS V., LEFEBVRE S., LEVY B.: In-
visible Seams. Computer Graphics Forum (Proc. EGSR’10) 29,
4 (2010), 1489–1496. 10

[SA12] SEGAL M., AKELEY K.: The OpenGL Graphics Sys-
tem: A Specification (Version 4.0 (Core Profile), Mar. 2012.
http://www.opengl.org/registry/doc/glspec40.core.20100311.pdf.
1

[SAE93] SHIRMUN L., ABI-EZZI S. S.: The Cone of Normals
Technique for Fast Processing of Curved Patches. Computer
Graphics Forum 12, 3 (1993), 261–272. 17, 19, 21

[SBOT08] SHOPF J., BARCZAK J., OAT C., TATARCHUK N.:
March of the Froblins: Simulation and Rendering Massive
Crowds of Intelligent and Detailed Creatures on GPU. In ACM
SIGGRAPH 2008 classes (2008), ACM, pp. 52–101. 20

[Sch12] SCHWARZ M.: Practical Binary Surface and Solid Vox-
elization with Direct3D11. In GPU Pro3: Advanced Rendering
Techniques. AK Peters Limited, 2012, p. 337. 21

[SGSH02] SANDER P. V., GORTLER S. J., SNYDER J., HOPPE
H.: Signal-Specialized Parametrization. In Proc. EGWR’02
(2002), pp. 87–98. 11

[SH02] SHEFFER A., HART J. C.: Seamster: Inconspicuous Low-
Distortion Texture Seam Layout. In VIS’02 (2002), IEEE Com-
puter Society, pp. 291–298. 10

[SKN∗14] SCHÄFER H., KEINERT B., NIESSNER M.,
BUCHENAU C., GUTHE M., STAMMINGER M.: Real-time
deformation of subdivision surfaces from object collisions. In
Proceedings of the 6th High-Performance Graphics Conference
(2014), EG. 16

[SKNS14] SCHÄFER H., KEINERT B., NIESSNER M., STAM-
MINGER M.: Local painting and deformation of meshes on the
gpu. Computer Graphics Forum (2014). 15

[SKS13] SCHÄFER H., KEINERT B., STAMMINGER M.: Real-
Time Local Displacement using Dynamic GPU Memory Man-
agement. In Proceedings of HPG’13 (2013), pp. 63–72. 15

[SKU08] SZIRMAY-KALOS L., UMENHOFFER T.: Displacement
Mapping on the GPU - State of the Art. Computer Graphics
Forum 27, 6 (2008), 1568–1592. 9

[SM88] SEDERBERG T., MEYERS R.: Loop Detection in Sur-
face Patch Intersections. Computer Aided Geometric Design 5, 2
(1988), 161–171. 18, 19, 21

[SNK∗14] SCHÄFER H., NIESSNER M., KEINERT B., STAM-
MINGER M., LOOP C.: State of the art report on real-time ren-
dering with hardware tessellation. 1

[SPM∗12] SCHÄFER H., PRUS M., MEYER Q., SÜSSMUTH J.,
STAMMINGER M.: Multi-Resolution Attributes for Hardware
Tessellated Meshes. In Proceedings of I3D’12 (2012), ACM,
pp. 175–182. 12, 13

[SPM∗13] SCHÄFER H., PRUS M., MEYER Q., SÜSSMUTH J.,
STAMMINGER M.: Multi-Resolution Attributes for Hardware
Tessellated Objects. IEEE Transactions on Visualization and
Computer Graphics (2013), 1488–1498. 15

[SRK∗15] SCHÄFER H., RAAB J., KEINERT B., MEYER M.,
STAMMINGER M., NIESSNER M.: Dynamic feature-adaptive
subdivision. In Proceedings of the 19th Symposium on Interac-
tive 3D Graphics and Games (2015), ACM, pp. 31–38. 8

[SS09] SCHWARZ M., STAMMINGER M.: Fast GPU-based
Adaptive Tessellation with CUDA. Computer Graphics Forum
28, 2 (2009), 365–374. 1

[Sta98] STAM J.: Exact Evaluation of Catmull-Clark Subdivision
Surfaces at Arbitrary Parameter Values. In Proceedings of SIG-
GRAPH (1998), Annual Conference Series, ACM, pp. 395–404.
5

[Sti80] STINY G.: Introduction to Shape and Shape Grammars.
Environment and Planning B 7, 3 (1980), 343–351. 11

[SWB98] SLOAN P.-P. J., WEINSTEIN D. M., BREDERSON J.:
Importance Driven Texture Coordinate Optimization. Computer
Graphics Forum 17, 3 (1998), 97–104. 11

[SWG∗03] SANDER P. V., WOOD Z., GORTLER S. J., SNYDER
J., HOPPE H.: Multi-Chart Geometry Images. In Proceedings of
SGP’03 (2003), pp. 146–155. 10

[Tat09] TATARCHUK N.: Fast High-Quality Rendering with Real-
Time Tessellation on GPUs. In ShaderX 7, Engel W., (Ed.).
Charles River Media, 2009. 15

[TBB10] TATARCHUK N., BARCZAK J., BILODEAU B.: Pro-
gramming for Real-Time Tessellation on GPU. AMD whitepaper
5, 2010. 11

[THCM04] TARINI M., HORMANN K., COGNONI P., MONTANI
C.: PolyCube-Maps. ACM Trans. Graph. 23, 3 (2004), 853–860.
16

[TMJ98] TANNER C. C., MIGDAL C. J., JONES M. T.: The
Clipmap: A Virtual Mipmap. In Proceedings of SIGGRAPH 98
(1998), Annual Conference Series, ACM, pp. 151–158. 11

[Ulr02] ULRICH T.: Rendering Massive Terrains using Chunked
Level of Detail Control. In ACM SIGGRAPH 02 Talks (2002),
ACM, p. 34. 11

[VPBM01] VLACHOS A., PETERS J., BOYD C., MITCHELL
J. L.: Curved PN Triangles. In Proceedings of I3D’01 (2001),
pp. 159–166. 5

[Wil83] WILLIAMS L.: Pyramidal Parametrics. Computer
Graphics 17, 3 (1983), 1–11. 12, 13

[WMWF07] WATSON B., MÜLLER P., WONKA P., FULLER A.:
Urban Design and Procedural Modelling. In ACM SIGGRAPH
2007 Courses (2007). 11

[XGH∗11] XIA J., GARCIA I., HE Y., XIN S.-Q., PATOW G.:
Editable Polycube Map for GPU-based Subdivision Surfaces. In
Proceedings of I3D’11 (2011), ACM, pp. 151–158. 16

[YBP12] YEO Y. I., BIN L., PETERS J.: Efficient Pixel-Accurate
Rendering of Curved Surfaces. In Proceedings of I3D’12 (2012),
pp. 165–174. 8

[YBP14] YEO Y. I., BHANDARE S., PETERS J.: Efficient pixel-
accurate rendering of animated curved surfaces. In Mathematical
Methods for Curves and Surfaces. Springer, 2014, pp. 491–509.
8

[YS11] YUSOV E., SHEVTSOV M.: High-Performance Terrain
Rendering Using Hardware Tessellation. WSCG (2011). 11

[Yus12] YUSOV E.: Real-Time Deformable Terrain Rendering
with DirectX 11. In GPU Pro 3, Engel W., (Ed.). A K Peters,
2012. 15

c⃝ 2015 The Author(s)
c⃝ 2015 The Eurographics Association and Blackwell Publishing Ltd.

http://graphics.pixar.com/opensubdiv
http://graphics.pixar.com/opensubdiv
http://www.qualcomm.com/media/releases/2013/11/20/qualcomm-technologies-announces-next-generation-qualcomm-snapdragon-805
http://www.qualcomm.com/media/releases/2013/11/20/qualcomm-technologies-announces-next-generation-qualcomm-snapdragon-805
http://www.qualcomm.com/media/releases/2013/11/20/qualcomm-technologies-announces-next-generation-qualcomm-snapdragon-805
http://www.opengl.org/registry/doc/glspec40.core.20100311.pdf

