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Abstract We present a novel hybrid rendering method for
diffuse and glossy indirect illumination. A scene is rendered
using standard rasterization on a GPU. In a shader, sec-
ondary ray queries are used to sample incident light and to
compute indirect lighting. We observe that it is more impor-
tant to cast many rays than to have precise results for each
ray. Thus, we approximate secondary rays by intersecting
them with precomputed layered depth images of the scene.
We achieve interactive to real-time frame rates including in-
direct diffuse and glossy effects.

Keywords Real-time global illumination · Hybrid
rendering

1 Introduction

We present a method to compute indirect diffuse and glossy
lighting on the GPU within the rasterization pipeline. Indi-
rect lighting is computed in a pixel shader by casting sec-
ondary rays with approximate intersections. This is moti-
vated by the assumption that it is more important for these
effects to have many rays than to have precise intersection
points. As a result, we achieve interactive rendering times
for single-bounce indirect diffuse and glossy lighting. An
example is shown in Fig. 1, which contains indirect glossy
and diffuse lighting and is rendered at 27 frames per second.
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Fig. 1 Indirect lighting on the three objects in the Cornell Box ren-
dered at 27.0 fps (512 × 512 resolution) using our method: glossy
BRDF on sphere and lion, diffuse BRDF on dragon

Approximate ray intersections are computed using a set
of orthographic layered depth images (LDIs) taken for dif-
ferent directions. For each secondary ray, the LDI with the
most similar direction is determined and the intersection
within this LDI is computed. Due to the similar projection
and ray direction, only a few pixels have to be traversed in
this step, making the computation very fast. On the down-
side, the LDIs may require significant memory. However, in
our experiments a rather limited number of LDIs (about 100)
and rather low LDI resolution (128 × 128 up to 512 × 512)
was sufficient for indirect lighting. Furthermore, LDIs can
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be compressed well: in our example scenes, memory con-
sumption was always less than 100 MB, even for scenes like
Sponza or Sibenik.

Our method is hybrid in the sense that eye rays are
computed using rasterization, whereas indirect lighting is
computed by sampling incident light using secondary rays.
Shadows can be computed using rasterization techniques,
typically by shadow maps or volumes, or using our ray inter-
section approximation. In order to further accelerate indirect
lighting computation, we reduce the number of indirect rays
and filter indirect light in screen space. Our approach allows
us to utilize the advanced anti-aliasing capabilities of current
GPUs at almost no additional cost.

2 Previous work

With increasing computational power of GPUs, the inclu-
sion of global illumination effects into real-time rendering
has attracted more and more attention. Two main directions
of research can be observed: one is to include global illu-
mination to the standard rasterization pipeline, the other one
is to make ray tracing interactive. Hybrid algorithms try to
combine both rendering paradigms. In the following, we try
to give an overview of papers that are related to our work.

Rasterization based global illumination Soft shadows are
an important subproblem of global illumination. There have
been many approaches to extend shadow volumes, e.g.
[3, 7], or shadow maps, e.g. [8], to also generate soft shad-
ows. Several of the shadow map based approaches use a sin-
gle layered depth image taken from the light source’s center
(termed multilayer shadow map) to approximate visibility
[1, 4, 20, 24, 27]. Ritschel et al. [16] use a series of shadow
maps from different parallel directions for global lighting
computations and presented ways to compress the shadow
maps.

A very early method that generates indirect diffuse light
is instant radiosity [12]. Indirect light is represented using
virtual point lights, which are rendered using shadow maps.
Dachsbacher et al. [6] add the indirect light due to vir-
tual point lights using a deferred shading approach. Ritschel
et al. [17] present an efficient method to interactively com-
pute all necessary shadow maps. Since indirect light is gen-
erally smooth, image space interpolation as proposed by
Segovia et al. [21] is often used to reduce the sample density
and blur noise or discretization artifacts. Recently, Ritschel
et al. [18] presented a method to compute indirect sample
rays within the standard rendering pipeline, using low reso-
lution per-pixel buffers.

Interactive ray tracing An overview of ray tracing accel-
eration structures for CPUs is given in [10]. Wald et al. were

among the first to propose ray tracing for interactive render-
ing [25]. When GPUs became freely programmable, their
application for ray tracing has been examined by Purcell
et al. [15].

The architecture of today’s GPU requires specific opti-
mization in order to achieve optimum performance. Aila
et al. [2] give an overview of current GPU ray tracing meth-
ods and present their own implementation. A general obser-
vation for ray tracing based global illumination is that com-
putation time strongly depends on ray coherence. Aila et al.
report up to 150 million rays per second for coherent pri-
mary rays, but only 20–40 million rays per second for inco-
herent secondary diffuse rays. Ray packets in [26] are used
to accelerate the traversal of coherent rays using SIMD par-
allelism.

A major problem with interactive ray tracing is the gen-
eration and update of the acceleration structure for dynamic
scenes, but efficient solutions are available meanwhile [13].

Hybrid methods Hybrid approaches try to combine the
high efficiency of rasterization for the computation of eye
ray hits with the flexibility of indirect lighting computation
by ray tracing. Roger et al. [19] build on the fly a 5D ac-
celeration structure to compute (coherent) secondary rays.
Hertel et al. [11] compute shadows using a shadow map and
cast additional rays to decide about uncertain shadow map
results. Bürger et al. [5] use a cube of three orthogonal LDIs
to trace arbitrary rays for secondary lighting effects.

Layered Depth Images Layered Depth Images [23] are ras-
terized depth values of a scene where for each pixel not only
the frontmost depth value is stored, but all depth values are
kept in a per-pixel list. Depth Peeling [14] is a simple way
to generate LDIs with fixed length list on a GPU. Such lists
can be well compactified using a scan operation [22] com-
puting a prefix sum. Hatchisuka et al. also use LDIs in a
non-interactive final gather pass.

3 Ray approximation using LDIs

The core idea of our method is to use layered depth images
(LDIs) to approximate secondary ray intersection. We will
first describe the generation of the LDIs and then their usage
for approximate intersection computations.

3.1 LDI generation

In a preprocessing step, we generate n orthographic LDIs of
the scene, using uniformly distributed projection directions.
We generate the n directions by uniformly sampling a unit
cube with a resolution of k2 per face, resulting in n = 6k2 di-
rections. This sampling is not perfectly uniform, but allows
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Fig. 2 To save memory for
areas with low depth
complexity, we count the depth
values for each pixel of a given
LDI (mi ) and apply stream
compactification

us to quickly determine the closest sample direction for a
given ray later. The LDIs for opposite direction are redun-
dant, so memory consumption could be halved by using a
single LDI for both directions, but we currently do not ex-
ploit this.

Each LDI is generated using depth peeling [14], which
results in a series of m depth layers. Next, we compactify
the m layers (cf. Fig. 2). Be pi, i = 1, . . . ,N , the ith pixel,
e.g., in scanline order, and mi ≤ m the number of depth lay-
ers found for pixel pi . Then, we compute the prefix sum [22]
of the mi , resulting in a sequence m̄i = ∑i−1

j=1 mi .
The m̄i are used as indices to a compactified array,

which is a linear float texture. The depth values and corre-
sponding triangle ids of each pixel i are stored in positions
m̄i, . . . , m̄i+1 −1. The m̄i are stored in an integer texture, so
we can quickly access the data associated with each pixel.

3.2 LDI ray tracing

Given a ray k + αl, we use the previously computed LDIs
to approximate an intersection point. First, we determine the
LDI with the most similar projection direction compared to
the ray direction l. Next, the ray starting point k is projected
into the orthogonal screen space of the LDI, giving us the
starting pixel of the ray. We fetch the depth layers for that
pixel and determine whether the ray intersects one of these
before it leaves the pixel (cf. Fig. 3). If yes, we directly re-
turn the found sample as intersection. Otherwise, we iterate
through the neighboring pixels as touched by the ray. These
pixel crossings are continued until an intersection is found
or the ray leaves the LDI.

Ideally, the projection and ray direction are identical (left
ray in Fig. 3). In this case, only the intersection with the
depth layers from the start pixel needs to be determined—
no pixel crossings are necessary. The more projection and
ray direction differ, the more pixel crossings are needed
(e.g., right ray in Fig. 3). Furthermore, there is a danger
that a ray leaks through the discretization of a closed surface

Fig. 3 (Left) We intersect rays with a discretized approximation (LDI,
dark blue). (Right) For steep geometry, leaks can occur

(Fig. 3, right). We solve this issue using a simple ε-tolerance
for the intersection computation.

Having obtained an intersection for a ray with the scene
geometry, the triangle id which is also stored is used as a
reference back to the original scene geometry. Thus, neces-
sary data for shading such as normals, texture coordinates
and material information can be obtained.

The time to compute such an approximate intersection
mainly depends on the number of pixel crossings. Thus, a
lower LDI resolution is faster, but also results in less accu-
rate results. A larger number of LDIs on average results in
more similar ray and LDI directions, and thus in fewer pixel
crossings and better performance. On the other hand, more
LDIs require more memory and thus reduce cache coherence
during traversal. We will examine these issues in Sect. 7.

4 Hybrid rendering

We embedded the LDI tracing into a hybrid renderer. In a
preprocessing step, LDIs are rendered and packed into tex-
tures. Eye rays are computed by conventional rasterization,
pixel shaders can cast secondary rays using our approxi-
mate method. We implemented pixel shaders with global il-
lumination effects, namely mirroring, glossy, and diffuse re-
flections by distribution ray tracing, hard shadows, and soft
shadows by area light source sampling. In the following, we
will concentrate on indirect illumination, which is ideal for
our approach. Deferred shading is used to avoid costly com-
putations for occluded pixels. We support different materials
by storing a shader identifier per pixel. Since we shoot the
rays from within a shader, arbitrary BRDFs and textures are
directly supported.

Hybrid rendering also allows us to add anti-aliasing with-
out significant extra costs, see Fig. 4. While common ray
tracers need to shoot a multiple of additional primary rays
for multi-sampling, we employ graphics hardware for this
task. Note that with anti-aliasing, as supported by state-of-
the-art GPUs, multiple eye ray samples are computed per
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pixel. However, for every visible primitive within a pixel,
only a single shader call is executed, i.e., per pixel only one
set of secondary rays are cast. In order to have anti-aliasing
support in connection with deferred shading, all render tar-
gets have to be multi-sample render targets.

5 Approximating indirect illumination

In order to realize indirect illumination, we evaluate glossy
and diffuse BRDFs using distribution ray tracing. While
a single reflecting ray is needed for perfectly mirroring
surfaces, glossy BRDFs need several secondary rays scat-
tered around the reflection direction. Diffuse BRDFs require
most samples because rays are distributed over the complete
hemisphere around a pixel’s normal. Fortunately, approxi-
mation errors for diffuse secondary rays are well blurred out.

We only compute a single bounce of indirect light. For
the hit points of the secondary rays, we use a standard lo-
cal lighting model including a shadow map for visibility
queries. If the hit surface is textured, we access a coarse
mipmap level in order to filter the texture and reduce alias-
ing.

Efficient rendering is achieved by using a coarse LDI res-
olution (128 × 128 is a good choice). For indirect diffuse
and glossy light, such a low resolution was sufficient in our

Fig. 4 The Sibenik scene without (left, 17.5 fps) and with anti-aliasing
(right, 16.5 fps)

scenes, for highly specular surfaces, however, higher resolu-
tion is required or discretization artifacts become visible.

Our time budget allows us to compute between 8 and 64
secondary rays per pixel, which still results in visible noise.
To counteract this, we use filtering and combine informa-
tion about secondary rays of adjacent pixels. Basically, an
n × n filter kernel causes a pixel’s color to be influenced by
rays/pixel · n2 indirect rays. For fast filtering, we employ
a separable Gaussian filter implemented on the GPU. Pre-
venting filtering over hard edges as suggested in [21] did
not seem to be necessary in our test scenes, however, this is
an option to assess in the future.

In summary, we realize indirect illumination with the fol-
lowing pipeline:

– Rasterize the scene into a G-Buffer.
– Shoot diffuse secondary rays using LDIs.
– Filter indirect diffuse light contribution with a two pass

Gaussian.
– Shoot secondary rays for glossy materials.
– Combine direct, indirect diffuse and glossy light contri-

butions.

The interim results of each step are visualized in Fig. 5.

6 Handling dynamic objects

Once having built the LDI structure, all scene geometry is
fixed. The LDIs are rasterized on the GPU, but depth peel-
ing requires several render passes for a single LDI. Hence,
the precomputation consists of rendering a few hundred up
to several thousand frames plus a subsequent compactifica-
tion (which we currently do on the CPU). This can be done
in a few seconds considering moderately complex scene en-
vironments (see Sect. 7). However, we do not expect to be
able to update the LDIs interactively on current graphics
hardware. Consequently, only light and viewing positions
are fully dynamic.

A practical solution for handling dynamic objects is to
simply skip them during LDI creation. As a result, only the

Fig. 5 The different steps of our indirect illumination pipeline from left to right: direct light including shadows, filtered diffuse indirect light,
glossy indirect light, and all combined
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Fig. 6 Both images show indirect illumination and a glossy reflection
on the sphere. On the right, the Buddha is not part of the LDIs. Conse-
quently he cannot be seen on the sphere. However, although he cannot
emit light, the Buddha still receives indirect light (note the color bleed-
ing) and casts shadows that are seen in the reflection. This allows him
to be a fully dynamic receiver without recomputing LDIs

static geometry is present in the LDIs and can emit indi-
rect light. Even so, dynamic objects that are not part of the
LDIs can receive indirect light from them. So it makes sense
to use LDIs for static environments, but to gather indirect
light also on the dynamic objects. An apparent difference
exists mainly for glossy objects, since the dynamic objects
are missed in reflections (cf. Fig. 6).

7 Results

Our implementation is based on DirectX 10 and was tested
on an NVIDIA GTX 285 with 1024 MB of memory. All
images shown have been computed at a screen resolution of
512 × 512.

The LDI generation including compactification is done
offline and takes from 1 second (96 LDIs with 128 × 128
pixels) up to 23 seconds (384 LDIs with 512 × 512 pixels)
for the Sponza scene. We did not spent efforts to optimize
this, and compactification is currently done on the CPU.
Memory consumption is depending on the scene’s average
depth complexity, LDI resolution and LDI number. We need
around 15 MB up to 60 MB memory for our test scenes us-
ing 150 LDIs with 128×128 pixels (this setup with 150 and
96 LDIs is used for indirect illumination).

Examining LDI ray tracing For a start, we examine the
quality and performance using LDIs for ray tracing, regard-
ing their resolution and number. Figure 7 shows the loss of
quality by decreasing LDI resolution from 512 × 512 down
to 128 × 128, both with 150 LDIs. As expected, the low
resolution results in pixelized reflections. Performance also
varies significantly: 336 fps (512 × 512 pixel LDIs) versus
600 fps (128 × 128 pixel LDIs). A smaller resolution de-
creases the number of required pixel crossings, and conse-
quently ray tracing performs faster.

Fig. 7 The quality of a reflection with LDI resolution of 512 × 512
(left) and 128 × 128 pixels (right)

Fig. 8 Soft shadows: rendered at 19.5 fps (left) and 22.5 fps (right)
using 384 LDIs (512 × 512 resolution)

Table 1 Rays/s for different BRDFs using LDIs with 512 × 512 and
128 × 128 pixels in the Sibenik scene including shading

BRDF 512 × 512 128 × 128 LDIs

diffuse 11–16 M 37–50 M 96

glossy 63–71 M 151–209 M 150

soft shadows 79–103 M 283–377 M 384

The comparison shows that a tradeoff between quality
and performance is possible. For glossy and particularly dif-
fuse secondary rays, artifacts from lower LDI resolutions are
blurred out. In this case a lower LDI resolution is acceptable
with the benefit of much faster ray intersections and lower
memory consumption. In contrast to this, soft shadows are
less error tolerant and tend to reveal inaccuracies at shadow
borders. Nevertheless, an LDI resolution of 512×512 is suf-
ficient to render smooth soft shadows as shown in Fig. 8.
The images are generated by sampling an area light with
16 shadow rays per pixel plus additional filtering (19.5 and
22.5 fps).

Table 1 shows how many rays we are able to cast for two
different LDI resolutions. All rays/s refer to secondary rays
only, however, hardware rasterized additional primary rays
in parallel (the relation of primary to secondary rays was 1
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Fig. 9 Indirect illumination results. (Top left) Glossy BRDF on Lucy
included in the Sibenik scene (45.0 fps). (Top right) Glossy BRDF on
floor of Sponza (52.5 fps). (Bottom left) Diffuse indirect lighting in the

Sponza scene (19.0 fps). For comparison, the left half is without indi-
rect lighting. (Bottom right) Diffuse indirect lighting for an enhanced
Sponza (15.5 fps)

to 16). We see that coherent soft shadow rays behave best.
Since glossy rays are at least more coherent within a single
pixel shader call, we are able to shoot a significant higher
number of glossy rays/s than diffuse rays/s. We also deter-
mined that using 150, 96 and 384 LDIs for the respective
BRDF optimized the performance in our test scenes. In the-
ory more LDIs inflict fewer pixel crossings and theoretically
boost performance. However, in practice using (particularly
for incoherent rays) more LDIs results in incoherent mem-
ory access and penalizes caching effects. Consequently, only
soft shadow performance benefits from an increased LDI
count. The more important thing is revealed by the com-

parison of LDI resolutions. While for 512 × 512 pixels the
performance is comparable to common GPU ray tracers, for
lower resolutions we are much faster (see Aila et al. [2],
Sibenik scene results).

Moreover, for each ray we already applied shading in-
cluding a visibility query using a shadow map lookup. The
hybrid renderer also provides cheap extra primary rays for
anti-aliasing. Figure 4 shows the Sibenik scene without
(left) and with (right) anti-aliasing including 8 secondary
light rays/pixel. The left image is rendered at 17.5 fps and
the right one at 16.5 fps, while right includes anti-aliasing
(4 samples/pixel). The aliasing artifacts on the window and



Fast indirect illumination using Layered Depth Images 685

arcs are obviously reduced. A comparable ray tracer would
need to trace 4 instead of 1 primary rays per pixel for the
same effect.

Performance depended less on the polygon count of a
scene than on the current viewing position. Thus, for all
test scenes the performance was approximately constant.
The framerate in tight corridors of the Sponza scene was
higher than in an empty Cornell Box, which is reasonable
since rays which sooner hit objects trigger fewer pixel cross-
ings.

Applying indirect illumination In order to cast many rays,
we use LDIs of 128 × 128 pixels for both glossy and diffuse
indirect illumination. Glossy reflections are rendered with
16 secondary rays/pixel (no filtering) and diffuse BRDFs are
applied with 8 secondary rays/pixel, plus subsequent filter-
ing with a 11 × 11 Gaussian filter kernel.

Our results for rendering indirect illumination can be
seen in Fig. 9. Top left shows Lucy embedded in the Sibenik
scene rendered at 45.0 fps using 150 LDIs. Note the reflec-
tion of the environment on Lucy’s surface. Top right is also
a glossy effect on the floor of the Sponza scene rendered
at 52.5 fps using 96 LDIs. Bottom left shows the Sponza
scene with diffuse indirect illumination rendered at 19.0 fps
using 96 LDIs. For comparison, the left half shows the re-
sult without indirect light. Bottom right shows an enhanced
Sponza scene rendered at 15.5 fps. All illumination of shad-
owed pixels is exclusively obtained through secondary rays
(shadow map absorbs all direct light). We see a performance
gap between glossy and diffuse BRDFs, which is caused by
the following reasons: first, for the upper images we had to
trace fewer secondary rays. Second, diffuse rays are less co-
herent and thus more costly. Filtering also generates small
extra costs.

Figure 1 demonstrates the combination of diffuse and
glossy BRDFs on different objects in a single scene rendered
at 27.0 fps. We used 150 LDIs, 16 secondary rays for the
glossy and 8 secondary rays for the diffuse BRDF. While
the dragon has a glossy shading (notice the color bleeding
from the green wall), the sphere and the lion are glossy.

In summary, we are able to add diffuse global illumina-
tion at around 15–25 fps. Glossy BRDFs behave far better
and allow higher frame rates or more secondary rays/pixel.
It is also possible to apply our method on objects selectively
in order to use distinct BRDFs for different models, or just
to reduce computation costs.

For larger scenes, an increased LDI resolution is required
in order to maintain the same quality. However, this mainly
has an impact on precomputation time and on memory con-
sumption, performance is not affected significantly since the
number of pixel crossings remains roughly constant.

8 Conclusion

We presented a novel and very efficient method for approx-
imate ray tracing on the GPU. Using low resolution LDIs
allows us to cast over 200 million glossy and 50 million
diffuse rays/s. We demonstrated that the approximation er-
rors of single rays average out, and consequently LDI ray
tracing is ideal for indirect illumination. In order to harness
advantages of both rasterization (i.e., anti-aliasing) and ray
tracing (indirect illumination), we combined these methods
resulting in a hybrid renderer that achieves real-time frame
rates.
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