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Why are Graphics Systems so Fast? 

Pat Hanrahan 
Pervasive Parallelism Laboratory 

Stanford University 

PACT Keynote 
September 14, 2009 

Answer 1 

Simulating virtual worlds 
requires high performance 
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Modern Graphics Pipeline 

Application 

Geometry 

Rasterization 

Texture 

Fragment 

Display 

Command 

NVIDIA Historicals 
Year Product Tri rate CAGR Tex rate CAGR 

 1998 Riva ZX         3m     -     100m     - 
 1999 Riva TNT2         9m   3.0     350m   3.5 
 2000 GeForce2 GTS       25m   2.8     664m   1.9 
 2001 GeForce3       30m   1.2     800m   1.2 
 2002 GeForce Ti 4600       60m   2.0   1200m   1.5 
 2003 GeForce FX     167m   2.8   2000m   1.7 
 2004 GeForce 6800 Ultra     170m   1.0   6800m   2.7 
 2005 GeForce 7800 GTX     940m   3.9  10300m   2.0 
 2006 GeForce 7900 GTX    1400m   1.5  15600m   1.4 
 2007 GeForce 8800 GTX    1800m   1.3  36800m   2.3 
 2008 GeForce GTX 280  48160m   1.3 

   1.7   1.8 

Yearly Growth well above 1.5 (Moore’s Law) 
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Answer 2 

Cinematic games and media  
drive large GPU market 

∴ Afford the cost of SOA designs 

ATI Radeon 4870 

  55 nm process 

  958 million transistors 

  1016-wide 5-op cores 

  750 Mhz clock 

  256-bit GDDR memory       

    GDDR3/4/5 @ 3.6 Ghz = 115.2 GB/s 

  334 Watts  
(R300 die) 
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NVIDIA GTX 280 

  65 nm TSMC process 

  1.4 biillion transistors 

  575 mm^2 

  240 scalar processors 

      1.3 Ghz clock rate 

  512-bit GDDR memory       

      GDDR @ 1.1 Ghz = 141.7 GB/s 

  236 Watts 

Answer 3 

GPUs efficiently use  
semiconductor technology 
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Scaling Laws 

Moore’s Law 
  Number of transistors doubles every 18 months 
  Number of transistors increases by ~50% / yr 
  Feature size decreases by ~25% / yr 
  Gate delay decreases with feature size – by ~25% / yr  

Semiconductor capability =  
 Number of transistors / Switching speed 
  50% (number) + 25% (speed) 

The Capability Gap 

52%/year 

74%/year 

19%/year 30:1 

1,000:1 

30,000:1 

Graph courtesy of Bill Dally 
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Answer 4 

GPUs cleverly employ 
many forms of parallelism 

in innovative ways 

3 Axes of Parallelism 

Multi-
Core 

Multi-
Thread 

SIMD 
Vector 
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GPU Architectures 

A Closer Look at GPUs 

Kayvon Fatahalian and Mike Houston 

Communications of the ACM. Vol. 51, No. 10 (October 2008) 

From Shader Code to a Teraflop: How Shader Cores Work  

Kayvon Fatahalian 

Beyond Programming Shading, SIGGRAPH 2009 Course Notes 

GeForce G80 Series GPU 
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Shader Model 4.0 Architecture 

Input 

Program 

Output 

Parameters 

Registers 

Textures 

Basic Vertex Program 

DP4   o[HPOS].x, c[0], v[OPOS];     # Transform pos. 
DP4   o[HPOS].y, c[1], v[OPOS]; 
DP4   o[HPOS].z, c[2], v[OPOS]; 
DP4   o[HPOS].w, c[3], v[OPOS]; 
DP3   R0.x, c[4], v[NRML];          # Transform normal. 
DP3   R0.y, c[5], v[NRML];  
DP3   R0.z, c[6], v[NRML]; 
DP3   R1.x, c[32], R0;              # R1.x = L DOT N' 
DP3   R1.y, c[33], R0;              # R1.y = H DOT N' 
MOV   R1.w, c[38].x;                # R1.w = specular 
LIT   R2, R1;                       # Compute lighting 
MAD   R3, c[35].x, R2.y, c[35].y;   # diffuse + ambient 
MAD   o[COL0].xyz, c[36], R2.z, R3; # + specular 
END 
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G80 “core” / CUDA Architecture 

Local Storage 

Each core 
  Thread block 

  SIMD (SIMT) 
  8 functional units 
  MADD + MUL 
  16/32 “warp” 

  32 thread blocks per core 
  1024 “threads” total 

Each unit 
  2-3 cores 
  16 KB shared memory 

Critical Inner Loop for Graphics 

ps_2_0 
DCL   t0.xy   # Interpolate t0.xy 
DCL   v0.xyzw   # Interpolate v0.xyzw 
DCL_2D  s0    # Declaration – no code 
TEX1D  r0, t0, s0   # TEXTURE LOAD! 
MUL   r1, r0, v0   # Multiply 
MOV   oC0, r1   # Store to framebuffer 

The program must run at 100% efficiency 
Short inner loop 
Very little state (few registers) 
Random memory (texture) access 
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GPU Multi-threading 

Change thread after texture fetch/stall  

frag4 frag3 frag2 frag1 
Run until stall at 

texture fetch 
(multiple instructions) 

NVIDIA GeForce GTX 285 “core” 

… 

= instruction stream decode = SIMD functional unit, control  
   shared across 8 units 

= execution context storage  = multiply-add 
= multiply 
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Typical Chip 

16 cores 

8 mul-add ALUs per core 
(128 total) 

= 256 GFLOPs   (@ 1GHz) 

“Enthusiast” Chip! 

32 cores x 8 SIMD functional units x 3 flops/cycle x 1.3 Ghz = 933 Gflops 
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NVIDIA GeForce GTX 285 
•  NVIDIA-speak: 

–  240 stream processors 
–  “SIMT execution” 

•  Generic speak: 
–  30 cores 
–  8 SIMD functional units per core 

AMD Radeon HD 4890 “core” 

… 

= instruction stream decode = SIMD VLIW functional unit,  
    control shared across 16 units   

= execution context storage  
= multiply-add 
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AMD Radeon HD 4890 “core” 

… 

•  Groups of 64 [fragments/vertices/etc.] share instruction stream 
(AMD doesn’t have a fancy name like “WARP”) 

–  One fragment processed by each of the 16 SIMD units 
–  Repeat for four clocks 

AMD Radeon HD 4890 

Tex 

Tex 

Tex 

Tex 

Tex 

Tex 

Tex 

Tex 

Tex 

Tex 

… 

… 

… 

… 

… 

… 

… 

… 

… 

… 

26 



Page 14 

AMD Radeon HD 4890 
•  AMD-speak: 

–  800 stream processors 
–  HW-managed instruction stream sharing (like “SIMT”) 

•  Generic speak: 
–  10 cores 
–  16 SIMD functional units per core 
–  5 ALUs per VLIW unit per SIMD lane 

27 

Larrabee 

Larrabee: A many-core x86 architecture for visual computing,   

D. Carmean, E. Sprangle, T. Forsythe, M. Abrash, L. Seiler, A. Lake, P.  

Dubey, S. Junkins, J. Sugerman, P. Hanrahan, SIGGRAPH 2008 

(IEEE Micro 2009, Top Pick) 
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Larrabee Core 

Separate scalar and vector units 
Separate register files 
In-order IA scalar core 
Vector unit: 16 32-bit ops/clock 
Short execution pipelines 
Fast access from L1 cache 
Direct connection to L2 cache 
Prefetch to manage L1/L2 caches 

Instruction Decode 

ALU 
AGU 

ALU 
AGU 

L1 Data Cache 

256K L2 Cache 

Ring 

L1 Instruction Cache 

Thread Dispatch 
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Vector Processing Unit 

•  Vector instructions support  
–  Fast, wide read from L1 cache 
– Numeric type conversion and data 
– Rearrange the lanes on register read 
–  Fused multiply add (three arguments) 
–  Int32, Float32 and Float64 data 

•  Augmented vector instruction set 
–  Scatter/gather for vector load/store 
– Mask registers select lanes 

Mask Registers 

Mask Registers 

16-wide Vector ALU 

Numeric 
Convert 

Numeric 
Convert 

L1 Data Cache 

Vector 
Reg File 

16-wide Vector ALU 

Convert 

Vector Mask Registers 

L1 
Data Cache 

Convert Store  
Buffer 
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Example LRBni Vector Instructions 

multiply-add: 
vmadd132ps v1, v2, v3 

mask the writing of the elements:  
vmadd132ps v1 {k1}, v2, v3 

source from memory 
vmadd132ps v1 {k1}, v2, [rbx+rcx*4] 

memory source undergoes format conversion 
vmadd132ps v1 {k1}, v2, [rbx+rcx*4]{float16} 

1.  Address computation 
2.  Load 
3.  Upconvert 
4.  Multiply 
5.  Add 
6.  Mask 

Different Notions of “SIMD” 

•  Option 1: Scalar and vector instructions 
–  Small number of threads 
–  Intel/AMD x86 SSE, Intel Larrabee 

•  Option 2:  Scalar instructions ⇒ implicit vectors 
–  Only scalar instructions; hardware merges instruction streams 
–  Each instruction is executed a small number of times 
–  NVIDIA GeForce (“SIMT” warps), AMD Radeon architectures 
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Various Notions of Threads 

Cores: Each runs multiple threads 

Thread: HW-managed context (hide short unpredictable latencies) 

… 
More Threads (up to 4 per core, share memory via L1 & L2 caches) 

Larrabee: Core, Threads 

Various Notions of Threads 

Cores: Each runs multiple threads 

Thread: HW-managed context (hide short unpredictable latencies) 

Fiber: SW-managed context (hides long predictable latencies) 

More Fibers running (typically 2-10, depending on latency to cover) 

… 

… 

… 

More Threads (up to 4 per core, share memory via L1 & L2 caches) 

Larrabee: Core, Threads, Fibers, Strands 
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Intel Larrabee “core” 

32 KB of L1 cache 
256 KB of L2 cache 

Each HW context: 
32 vector registers 

= instruction stream decode = SIMD vector unit,  
    control shared across 16 lanes 
    additional scalar unit = execution context storage/ 

    HW registers  = mul-add 

Intel Larrabee 
•  Intel speak: 

–  We won’t say anything about core count or clock rate 
–  Explicit 16-wide vector ISA 
–  Each core interleaves four x86 instruction streams 

•  Generic speak: 
–  That was the generic speak 
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Intel Larrabee 

… 

… 

…
 

…
 

? ? 

Tex Tex Tex Tex … ? … 
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Larrabee 

Each Larrabee core is a complete IA core 
  Context switching & pre-emptive multi-tasking 
  Virtual memory and page swapping 
  Fully coherent caches at all levels of the hierarchy 

Efficient inter-block communication 
  Ring bus for full inter-processor communication 
  Low latency high bandwidth L1 and L2 caches 
  Fast synchronization between cores and caches 

Recap 
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CPU-“style” Cores 

ALU 
(Execute) 

Fetch/ 
Decode 

Execution 
Context 

Out-of-order control logic 

Fancy branch predictor 

Memory pre-fetcher 

Data cache 
(A big one) 

GPU-style Cores 

Fetch/ 
Decode 

ALU 1 ALU 2 ALU 3 ALU 4 

ALU 5 ALU 6 ALU 7 ALU 8 

Ctx Ctx Ctx Ctx 

Ctx Ctx Ctx Ctx 

Shared Local Data  
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Three Key Ideas 

1.  Simplify the core. 
  Remove high-overhead logic to control out of order 

execution, branch predication, etc.  

2.  Exploit the efficiency of SIMD processing  
  Share instructions and replicate functional units 

3.  Use many threads to hide memory latency 
  Smaller caches, but still need thread state 
  If you have enough thread state, never a stall 

Optimizing for Throughput 
   Hypothetical Core design experiment:  

Specify a throughput-optimized processor with same 
area and power of a standard dual core CPU 

20 times greater throughput for same area and power 
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iPhone 3GS 
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Apple/Samsung SoC (CPU, GPU, Mem) 

Samsung ARM Cortex A8 
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Imagination PowerVR SGX535 

SGX520 3.5M Tri/S, 125M Pix/s @ 100 Mhz 

Heterogenous “Fusion” Architectures 

Emergence of a hybrid processor 
  2-8 CPUs 
  16-64 GPUs 
  Hardware for video compression/decompression 
  … 

Plans announced by AMD and Intel 
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Answer 5 

Graphics Systems are Programmed 
at a High-Level of Abstraction 

(Utilize Domain-Specific Languages) 

Brook 

Ian Buck  
PhD Thesis 

Stanford University 
Brook for GPUs: Stream computing on graphics hardware,   

I. Buck, T. Foley, D. Horn, J. Sugarman, K. Fatahalian, M. Houston, 

P. Hanrahan, SIGGRAPH 2004 

CUDA: Scalable parallel programming made clear, 

J. Nickolls, I. Buck, K. Skadron, and M. Garland,  

ACM Queue, April 2008 
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Brook Example 

kernel void foo ( 
  float a<>, float b<>, 
  out float result<> )  

{ 
  result = a + b; 

} 

float a<100>; 
float b<100>; 
float c<100>; 
foo(a,b,c); 

for (i=0; i<100; i++) 
 c[i] = a[i]+b[i]; 

Current Statistics: September 13, 2009 

Client type Current 
TFLOPS* 

Active Processors 

Windows 215 225,721 

Mac OS X/Intel 22 5,063 

Linux 77 45,028 

ATI 1,027 10,069 

NVIDIA 1,992 16,736 

PS/3 1,075 38,110 

Total 4,412 347,825 

*TFLOPs is actual folding flops, not peak values 
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Domain-Specific Languages 

Graphics (GRAMPS) 
Molecular dynamics (GROMACS) 
Physical simulation on meshes (Liszt) 
Data-parallel programming (Kore) 
Statistics/machine learning and data analysis (Bern) 
Computer vision and imaging 
Brain simulation 
Autonomous vehicles 
… 

Wrap-Up 
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Questions and Answers 

Why are graphics systems so fast? 

1. Simulating virtual worlds requires high performance 
2. Cinematic games and media drive large GPU market 
3. GPUs (more) efficiently use semiconductor resources 
4. GPUs employ many forms of parallelism in innovative 

ways (core, thread, vector) 
5. GPUs are programmed at a high-level 

Why are other compuer systems so slow / inefficient? 

Architectural Issues 

High-throughput processor design 
  SIMD vs. blocked threads (SIMT) 
  Software- vs. hardware-managed threads 

Processor of the future likely to be a hybrid CPU/GPU 
  Why? Heterogeneous workload 
  Small number of traditional CPU cores running 

a moderate number of sequential tasks 
  Large number of high-throughput GPU cores running 

data-parallel work 
  Special hardware for tasks that need to be power 

efficient 
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Opportunities 

Current hardware not optimal 
  Incredible opportunity for architectural innovation 

Current software environment immature 
  Incredible opportunity for reinventing parallel 

computing software, programming environments 
and language 
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Questions? 


