
Page 1

Why are Graphics Systems so Fast?

Pat Hanrahan
Pervasive Parallelism Laboratory

Stanford University

PACT Keynote
September 14, 2009

Answer 1

Simulating virtual worlds
requires high performance

Page 2

Modern Graphics Pipeline

Application

Geometry

Rasterization

Texture

Fragment

Display

Command

NVIDIA Historicals
Year Product Tri rate CAGR Tex rate CAGR

 1998 Riva ZX 3m - 100m -
 1999 Riva TNT2 9m 3.0 350m 3.5
 2000 GeForce2 GTS 25m 2.8 664m 1.9
 2001 GeForce3 30m 1.2 800m 1.2
 2002 GeForce Ti 4600 60m 2.0 1200m 1.5
 2003 GeForce FX 167m 2.8 2000m 1.7
 2004 GeForce 6800 Ultra 170m 1.0 6800m 2.7
 2005 GeForce 7800 GTX 940m 3.9 10300m 2.0
 2006 GeForce 7900 GTX 1400m 1.5 15600m 1.4
 2007 GeForce 8800 GTX 1800m 1.3 36800m 2.3
 2008 GeForce GTX 280 48160m 1.3

 1.7 1.8

Yearly Growth well above 1.5 (Moore’s Law)

Page 3

Answer 2

Cinematic games and media
drive large GPU market

∴ Afford the cost of SOA designs

ATI Radeon 4870

  55 nm process

  958 million transistors

  1016-wide 5-op cores

  750 Mhz clock

  256-bit GDDR memory

 GDDR3/4/5 @ 3.6 Ghz = 115.2 GB/s

  334 Watts
(R300 die)

Page 4

NVIDIA GTX 280

  65 nm TSMC process

  1.4 biillion transistors

  575 mm^2

  240 scalar processors

 1.3 Ghz clock rate

  512-bit GDDR memory

 GDDR @ 1.1 Ghz = 141.7 GB/s

  236 Watts

Answer 3

GPUs efficiently use
semiconductor technology

Page 5

Scaling Laws

Moore’s Law
  Number of transistors doubles every 18 months
  Number of transistors increases by ~50% / yr
  Feature size decreases by ~25% / yr
  Gate delay decreases with feature size – by ~25% / yr

Semiconductor capability =
 Number of transistors / Switching speed
  50% (number) + 25% (speed)

The Capability Gap

52%/year

74%/year

19%/year 30:1

1,000:1

30,000:1

Graph courtesy of Bill Dally

Page 6

Answer 4

GPUs cleverly employ
many forms of parallelism

in innovative ways

3 Axes of Parallelism

Multi-
Core

Multi-
Thread

SIMD
Vector

Page 7

GPU Architectures

A Closer Look at GPUs

Kayvon Fatahalian and Mike Houston

Communications of the ACM. Vol. 51, No. 10 (October 2008)

From Shader Code to a Teraflop: How Shader Cores Work

Kayvon Fatahalian

Beyond Programming Shading, SIGGRAPH 2009 Course Notes

GeForce G80 Series GPU

L2

FB

SP SP

L1

TF

Th
re

ad
 P

ro
ce

ss
or

Vertex Thread

Rasterization

Geometry Thread Pixel Thread

Input Assembler

Host

SP SP

L1

TF

SP SP

L1

TF

SP SP

L1

TF

SP SP

L1

TF

SP SP

L1

TF

SP SP

L1

TF

SP SP

L1

TF

L2

FB

L2

FB

L2

FB

L2

FB

L2

FB

Page 8

Shader Model 4.0 Architecture

Input

Program

Output

Parameters

Registers

Textures

Basic Vertex Program

DP4 o[HPOS].x, c[0], v[OPOS]; # Transform pos.
DP4 o[HPOS].y, c[1], v[OPOS];
DP4 o[HPOS].z, c[2], v[OPOS];
DP4 o[HPOS].w, c[3], v[OPOS];
DP3 R0.x, c[4], v[NRML]; # Transform normal.
DP3 R0.y, c[5], v[NRML];
DP3 R0.z, c[6], v[NRML];
DP3 R1.x, c[32], R0; # R1.x = L DOT N'
DP3 R1.y, c[33], R0; # R1.y = H DOT N'
MOV R1.w, c[38].x; # R1.w = specular
LIT R2, R1; # Compute lighting
MAD R3, c[35].x, R2.y, c[35].y; # diffuse + ambient
MAD o[COL0].xyz, c[36], R2.z, R3; # + specular
END

Page 9

G80 “core” / CUDA Architecture

Local Storage

Each core
  Thread block

  SIMD (SIMT)
  8 functional units
  MADD + MUL
  16/32 “warp”

  32 thread blocks per core
  1024 “threads” total

Each unit
  2-3 cores
  16 KB shared memory

Critical Inner Loop for Graphics

ps_2_0
DCL t0.xy # Interpolate t0.xy
DCL v0.xyzw # Interpolate v0.xyzw
DCL_2D s0 # Declaration – no code
TEX1D r0, t0, s0 # TEXTURE LOAD!
MUL r1, r0, v0 # Multiply
MOV oC0, r1 # Store to framebuffer

The program must run at 100% efficiency
Short inner loop
Very little state (few registers)
Random memory (texture) access

Page 10

GPU Multi-threading

Change thread after texture fetch/stall

frag4 frag3 frag2 frag1
Run until stall at

texture fetch
(multiple instructions)

NVIDIA GeForce GTX 285 “core”

…

= instruction stream decode = SIMD functional unit, control
 shared across 8 units

= execution context storage = multiply-add
= multiply

Page 11

Typical Chip

16 cores

8 mul-add ALUs per core
(128 total)

= 256 GFLOPs (@ 1GHz)

“Enthusiast” Chip!

32 cores x 8 SIMD functional units x 3 flops/cycle x 1.3 Ghz = 933 Gflops

Page 12

NVIDIA GeForce GTX 285
•  NVIDIA-speak:

–  240 stream processors
–  “SIMT execution”

•  Generic speak:
–  30 cores
–  8 SIMD functional units per core

AMD Radeon HD 4890 “core”

…

= instruction stream decode = SIMD VLIW functional unit,
 control shared across 16 units

= execution context storage
= multiply-add

Page 13

AMD Radeon HD 4890 “core”

…

•  Groups of 64 [fragments/vertices/etc.] share instruction stream
(AMD doesn’t have a fancy name like “WARP”)

–  One fragment processed by each of the 16 SIMD units
–  Repeat for four clocks

AMD Radeon HD 4890

Tex

Tex

Tex

Tex

Tex

Tex

Tex

Tex

Tex

Tex

…

…

…

…

…

…

…

…

…

…

26

Page 14

AMD Radeon HD 4890
•  AMD-speak:

–  800 stream processors
–  HW-managed instruction stream sharing (like “SIMT”)

•  Generic speak:
–  10 cores
–  16 SIMD functional units per core
–  5 ALUs per VLIW unit per SIMD lane

27

Larrabee

Larrabee: A many-core x86 architecture for visual computing,

D. Carmean, E. Sprangle, T. Forsythe, M. Abrash, L. Seiler, A. Lake, P.

Dubey, S. Junkins, J. Sugerman, P. Hanrahan, SIGGRAPH 2008

(IEEE Micro 2009, Top Pick)

Page 15

Larrabee Core

Separate scalar and vector units
Separate register files
In-order IA scalar core
Vector unit: 16 32-bit ops/clock
Short execution pipelines
Fast access from L1 cache
Direct connection to L2 cache
Prefetch to manage L1/L2 caches

Instruction Decode

ALU
AGU

ALU
AGU

L1 Data Cache

256K L2 Cache

Ring

L1 Instruction Cache

Thread Dispatch

Ve
ct

or
 p

ro
ce

ss
or

 in
te

rf
ac

e

Vector Processing Unit

•  Vector instructions support
–  Fast, wide read from L1 cache
– Numeric type conversion and data
– Rearrange the lanes on register read
–  Fused multiply add (three arguments)
–  Int32, Float32 and Float64 data

•  Augmented vector instruction set
–  Scatter/gather for vector load/store
– Mask registers select lanes

Mask Registers

Mask Registers

16-wide Vector ALU

Numeric
Convert

Numeric
Convert

L1 Data Cache

Vector
Reg File

16-wide Vector ALU

Convert

Vector Mask Registers

L1
Data Cache

Convert Store
Buffer

Page 16

Example LRBni Vector Instructions

multiply-add:
vmadd132ps v1, v2, v3

mask the writing of the elements:
vmadd132ps v1 {k1}, v2, v3

source from memory
vmadd132ps v1 {k1}, v2, [rbx+rcx*4]

memory source undergoes format conversion
vmadd132ps v1 {k1}, v2, [rbx+rcx*4]{float16}

1.  Address computation
2.  Load
3.  Upconvert
4.  Multiply
5.  Add
6.  Mask

Different Notions of “SIMD”

•  Option 1: Scalar and vector instructions
–  Small number of threads
–  Intel/AMD x86 SSE, Intel Larrabee

•  Option 2: Scalar instructions ⇒ implicit vectors
–  Only scalar instructions; hardware merges instruction streams
–  Each instruction is executed a small number of times
–  NVIDIA GeForce (“SIMT” warps), AMD Radeon architectures

Page 17

Various Notions of Threads

Cores: Each runs multiple threads

Thread: HW-managed context (hide short unpredictable latencies)

…
More Threads (up to 4 per core, share memory via L1 & L2 caches)

Larrabee: Core, Threads

Various Notions of Threads

Cores: Each runs multiple threads

Thread: HW-managed context (hide short unpredictable latencies)

Fiber: SW-managed context (hides long predictable latencies)

More Fibers running (typically 2-10, depending on latency to cover)

…

…

…

More Threads (up to 4 per core, share memory via L1 & L2 caches)

Larrabee: Core, Threads, Fibers, Strands

16-wide vector unit

St
ra

nd

St
ra

nd

St
ra

nd

St
ra

nd

St
ra

nd

St
ra

nd

St
ra

nd

St
ra

nd

St
ra

nd

St
ra

nd

St
ra

nd

St
ra

nd

St
ra

nd

St
ra

nd

St
ra

nd

St
ra

nd

16-wide vector unit

St
ra

nd

St
ra

nd

St
ra

nd

St
ra

nd

St
ra

nd

St
ra

nd

St
ra

nd

St
ra

nd

St
ra

nd

St
ra

nd

St
ra

nd

St
ra

nd

St
ra

nd

St
ra

nd

St
ra

nd

St
ra

nd

Page 18

Intel Larrabee “core”

32 KB of L1 cache
256 KB of L2 cache

Each HW context:
32 vector registers

= instruction stream decode = SIMD vector unit,
 control shared across 16 lanes
 additional scalar unit = execution context storage/

 HW registers = mul-add

Intel Larrabee
•  Intel speak:

–  We won’t say anything about core count or clock rate
–  Explicit 16-wide vector ISA
–  Each core interleaves four x86 instruction streams

•  Generic speak:
–  That was the generic speak

Page 19

Intel Larrabee

…

…

…

…

? ?

Tex Tex Tex Tex … ? …

Page 20

Larrabee

Each Larrabee core is a complete IA core
  Context switching & pre-emptive multi-tasking
  Virtual memory and page swapping
  Fully coherent caches at all levels of the hierarchy

Efficient inter-block communication
  Ring bus for full inter-processor communication
  Low latency high bandwidth L1 and L2 caches
  Fast synchronization between cores and caches

Recap

Page 21

CPU-“style” Cores

ALU
(Execute)

Fetch/
Decode

Execution
Context

Out-of-order control logic

Fancy branch predictor

Memory pre-fetcher

Data cache
(A big one)

GPU-style Cores

Fetch/
Decode

ALU 1 ALU 2 ALU 3 ALU 4

ALU 5 ALU 6 ALU 7 ALU 8

Ctx Ctx Ctx Ctx

Ctx Ctx Ctx Ctx

Shared Local Data

Page 22

Three Key Ideas

1.  Simplify the core.
  Remove high-overhead logic to control out of order

execution, branch predication, etc.

2.  Exploit the efficiency of SIMD processing
  Share instructions and replicate functional units

3.  Use many threads to hide memory latency
  Smaller caches, but still need thread state
  If you have enough thread state, never a stall

Optimizing for Throughput
 Hypothetical Core design experiment:

Specify a throughput-optimized processor with same
area and power of a standard dual core CPU

20 times greater throughput for same area and power

Page 23

iPhone 3GS

Page 24

Apple/Samsung SoC (CPU, GPU, Mem)

Samsung ARM Cortex A8

Page 25

Imagination PowerVR SGX535

SGX520 3.5M Tri/S, 125M Pix/s @ 100 Mhz

Heterogenous “Fusion” Architectures

Emergence of a hybrid processor
  2-8 CPUs
  16-64 GPUs
  Hardware for video compression/decompression
  …

Plans announced by AMD and Intel

Page 26

Answer 5

Graphics Systems are Programmed
at a High-Level of Abstraction

(Utilize Domain-Specific Languages)

Brook

Ian Buck
PhD Thesis

Stanford University
Brook for GPUs: Stream computing on graphics hardware,

I. Buck, T. Foley, D. Horn, J. Sugarman, K. Fatahalian, M. Houston,

P. Hanrahan, SIGGRAPH 2004

CUDA: Scalable parallel programming made clear,

J. Nickolls, I. Buck, K. Skadron, and M. Garland,

ACM Queue, April 2008

Page 27

Brook Example

kernel void foo (
 float a<>, float b<>,
 out float result<>)

{
 result = a + b;

}

float a<100>;
float b<100>;
float c<100>;
foo(a,b,c);

for (i=0; i<100; i++)
 c[i] = a[i]+b[i];

Current Statistics: September 13, 2009

Client type Current
TFLOPS*

Active Processors

Windows 215 225,721

Mac OS X/Intel 22 5,063

Linux 77 45,028

ATI 1,027 10,069

NVIDIA 1,992 16,736

PS/3 1,075 38,110

Total 4,412 347,825

*TFLOPs is actual folding flops, not peak values

Page 28

Domain-Specific Languages

Graphics (GRAMPS)
Molecular dynamics (GROMACS)
Physical simulation on meshes (Liszt)
Data-parallel programming (Kore)
Statistics/machine learning and data analysis (Bern)
Computer vision and imaging
Brain simulation
Autonomous vehicles
…

Wrap-Up

Page 29

Questions and Answers

Why are graphics systems so fast?

1. Simulating virtual worlds requires high performance
2. Cinematic games and media drive large GPU market
3. GPUs (more) efficiently use semiconductor resources
4. GPUs employ many forms of parallelism in innovative

ways (core, thread, vector)
5. GPUs are programmed at a high-level

Why are other compuer systems so slow / inefficient?

Architectural Issues

High-throughput processor design
  SIMD vs. blocked threads (SIMT)
  Software- vs. hardware-managed threads

Processor of the future likely to be a hybrid CPU/GPU
  Why? Heterogeneous workload
  Small number of traditional CPU cores running

a moderate number of sequential tasks
  Large number of high-throughput GPU cores running

data-parallel work
  Special hardware for tasks that need to be power

efficient

Page 30

Opportunities

Current hardware not optimal
  Incredible opportunity for architectural innovation

Current software environment immature
  Incredible opportunity for reinventing parallel

computing software, programming environments
and language

Acknowledgements

Bill Dally
Alex Aiken
Eric Darve
Vijay Pande
Bill Mark
John Owens
Kurt Akeley
Mark Horowitz

Ian Buck
Kayvon Fatahalian
Tim Foley
Daniel Horn
Michael Houston
Jeremy Sugerman
Doug Carmean
Michael Abrash

Funding: DARPA, DOE, ATI, IBM, INTEL, NVIDIA, SONY

Page 31

Questions?

