Analytic DB Technology for the Data Enthusiast

Pat Hanrahan Stanford & Tableau

SIGMOD Keynote 2012

My 1st Job: Analyzing Data

University of Wisconsin

Experimental Particle Physics

My 1st Job: Analyzing Data

Data Reduction and Error Analysis for the Physical Sciences

Data Analysis is Spreading

Doctor:

Why are my patients returning to the hospital?

Call Center Operator: Why does dispatching a tow truck cost so much in ND?

Doll Collector: What caused the price of vintage Barbie dolls to increase?

Game Producer: What causes players to buy virtual goods?

Why are databases so slow?

Data Scientist

Netflix Prize Team

Data science?

How a New Breed of Math Whizzes Conquered Wall Street and Nearly Destroyed It

SCOTT PATTERSON

Analytical Thinking?

Sherlock Holmes

"It is a capital mistake to theorize before one has data. Insensibly one begins to twist facts to suit theories, instead of theories to suit facts."

"Data, Data, Data! I can't make bricks without clay."

Definition: Analytical Thinking

"A structured approach to answering questions and making decisions based on facts and data"

My Process

Pose the question

- Find or collect the appropriate data
 - Check and verify
 - **Clean and normalize**
 - Contextualize the data by joining with other data
 - Explore relationships & patterns in the raw data
 - Generalize and summarize
 - **Confirm hypotheses and analyze errors**
 - Share findings with others
 - **Decide and act**

Decide and act

Test hypothesis, analyze errors, discover insight

Show relationships and patterns using visual representations

"Data Analysis is like doing Experiments," J. Tukey

Experiments

- 1. Theorize and hypothesize
- 2. Experiment
- **3.** Revise theory
- 4. The craft occupies the experimenter allowing time to think

Data Analysis

- 1. Theorize and hypothesize
- 2. Find trends and relationships
- 3. Find limitations of the model
- 4. Provide insight to improve the model

"State of the Art"

() 3 9 •	e - 3	⊽	Grad	les_Access_fi	nal.xlsx -	Microsof	t Excel					x
Home	Insert	Page Lay	out	Formulas	Data	Review	v View	Acroba	it	0	- =	n x
Paste V Clipboard S	ial ▼ Z <u>U</u> → - Font	10 • A A •	≡ ≡ ≣ ≣ ∰ ∰ Align	ment 5	General \$ → 9 •••0 →00 Numbe	* /6 * er ն	Styles	nsert * Delete * Format * Cells	Σ * 	Sort & F Filter * S Editing	ind &	
K16	+ (9	$f_x = A$	VERAGE(K6	i:K15)							*
A	В	С	D	E	F	G	Н	I	J	K	(-
2 3 Student No	Chap 1	Chap 2	Chap 3	Midterm	Chap 4	Chap 5	Final	Project	Activity	Total		Pe
4	40	40	40	300	40	40	325	75	100		1000	5-
5											-	
6 Alyson Smit	h 40	40	20	186	40	20	259	55	85	0	745	
7 Jason Rost	40	40	40	264	35	40	253	60	90		00Z	_
9 Jos Doboot	40	20	40	236	36	35	230	50	90	0	748	
10 Micah Khan	40	40	40	230	40	20	202	65	90		790	-
11 Paulee Man	son 40	40	0	196	40	20	301	5	85	0	727	
12 Scott Nelson	40	40	40	270	40	40	265	50	95	Q	880	- 1
13 Stephen Dia	z 40	40	40	256	40	40	232	70	95	õ	853	
14 Tamey Scha	ffer 40	40	32	225	35	35	285	65	90	0	847	
15												
16 Average	40	37.222	32	224.77778	38.333	32.222	254.22222	47.222	89.444	795.44	14444	0.
17												
This is not the This final version	ne											
19												-
Shee	t1 Sheet	2 / Shee	et3 / 🐑	1		I	1	UII.				T
Ready						2,000		100%	0	U	(÷.

Spreadsheets

"State of the Art"

Title

Server Hostname: itm64vm13.tivlab.raleigh.ibm.com

AVG_Used_	_CPU_MHz	Feb 14, 2011	Feb 15, 2011	Feb 16, 2011	Feb 17, 2011	Feb 18, 2011	Feb 19, 2011	Feb 20, 2011	Feb 21
vsvdash1	itm64vm13.tivlab.raleigh.ibm.com	182.73	169.17	166.52666667	163.02	161.25	154.7	152.34	
	vsvdash1	182.73	169.17	166.52666667	163.02	161.25	154.7	152.34	
vsvdash2	itm64vm13.tivlab.raleigh.ibm.com	124.45	109.04333333	155.74333333	117.35	114.705	110.3375	109.87666667	
	vsvdash2	124.45	109.04333333	155.74333333	117.35	114.705	110.3375	109.87666667	
vsvdash3	itm64vm13.tivlab.raleigh.ibm.com	122.98	111.82	226.14333333	120.425	112.77	107.215	110.56666667	
	vsvdash3	122.98	111.82	226.14333333	120.425	112.77	107.215	110.56666667	
vsvtaddm	itm64vm13.tivlab.raleigh.ibm.com	123.69	123.195	122.2	121.255	121.965	125.1475	123.55	
	vsvtaddm	123.69	123.195	122.2	121.255	121.965	125.1475	123.55	
win2008vm1	itm64vm13.tivlab.raleigh.ibm.com	2,654.675	2,653.92666667	2,655	2,653.35	2,654.66	2,654.465	2,655.15666667	2,655.(
	win2008vm1	2,654.675	2,653.92666667	2,655	2,653.35	2,654.66	2,654.465	2,655.15666667	2,655.0
Summary		641.705	669.87642857	703.90285714	635.08	633.07	630.373	666.49428571	671.54

Crosstabs and Pivot Tables

Idea: Visual Analysis

"Analytical Reasoning Facilitated by Interactive Visualization"

Polaris / Tableau Demo

C. Stolte's PhD Thesis

Summary	or Financial Ferio	mance	1						
		Central		East		South		West	
		Profit	Sales	Profit	Sales	Profit	Sales	Profit	Sales
Coffee	Amaretto	\$5,104	\$14,012	\$1,010	\$2,994			-\$1,224	\$9,263
	Columbian	\$8,525	\$28,911	\$27,256	\$47,385	\$8,767	\$21,663	\$11,256	\$30,352
	Decaf Irish Cream	\$9,635	\$26,157	\$2,726	\$6,262	\$2,935	\$11,596	-\$1,307	\$18,233
Espresso	Caffe Latte					\$3,873	\$15,443	\$7,502	\$20,456
	Caffe Mocha	\$14,642	\$35,218	-\$6,232	\$16,646	\$5,202	\$14,166	\$4,066	\$18,874
	Decaf Espresso	\$8,859	\$24,483	\$2,411	\$7,720	\$5,930	\$15,381	\$12,302	\$30,578
	Regular Espresso			\$10,065	\$24,031				
Herbal Tea	Chamomile	\$14,435	\$36,571	\$764	\$2,193	\$3,178	\$11,183	\$8,854	\$25,631
	Lemon	\$6,253	\$21,982	\$7,902	\$27,177	\$2,593	\$14,494	\$13,121	\$32,273
	Mint	\$4,069	\$9,335	-\$2,243	\$11,991			\$4,328	\$14,384
Tea	Darjeeling	\$10,769	\$30,284	\$6,500	\$14,094			\$11,784	\$28,773
	Earl Grey	\$10,334	\$32,883	\$3,404	\$6,507			\$10,426	\$27,382
	Green Tea	\$1,227	\$5,209	\$5,654	\$11,576			-\$7,112	\$16,065

How much mint tea was sold in the west?

Summary	of Financial Perio	rmance							
		Centra	al	East		South		West	
		Profit	Sales	Profit	Sales	Profit	Sales	Profit	Sales
Coffee	Amaretto	\$5,104	\$14,012	\$1,010	\$2,994			-\$1,224	\$9,263
	Columbian	\$8,525	\$28,911	\$27,256	\$47,385	\$8,767	\$21,663	\$11,256	\$30,352
	Decaf Irish Cream	\$9,635	\$26,157	\$2,726	\$6,262	\$2,935	\$11,596	-\$1,307	\$18,233
Espresso	Caffe Latte					\$3,873	\$15,443	\$7,502	\$20,456
	Caffe Mocha	\$14,642	\$35,218	-\$6,232	\$16,646	\$5,202	\$14,166	\$4,066	\$18,874
	Decaf Espresso	\$8,859	\$24,483	\$2,411	\$7,720	\$5,930	\$15,381	\$12,302	\$30,578
	Regular Espresso			\$10,065	\$24,031				
Herbal Tea	Chamomile	\$14,435	\$36,571	\$764	\$2,193	\$3,178	\$11,183	\$8,854	\$25,631
	Lemon	\$6,253	\$21,982	\$7,902	\$27,177	\$2,593	\$14,494	\$13,121	\$32,273
	Mint	\$4,069	\$9,335	-\$2,243	\$11,991			\$4,328	\$14,384
Tea	Darjeeling	\$10,769	\$30,284	\$6,500	\$14,094			\$11,784	\$28,773
	Earl Grey	\$10,334	\$32,883	\$3,404	\$6,507			\$10,426	\$27,382
	Green Tea	\$1,227	\$5,209	\$5,654	\$11,576			-\$7,112	\$16,065

What product in what region sold the most?

What product in what region sold the most?

2. Formulate Any Query

Q2. Find the department(s) that sells an item(s) supplied by the supplier Parker.

Here the user fills in both the SALES and the SUPPLY Tables as follows.

SALES	DEPT	ITEM	SUPPLY	ITEM	SUPPLIER
	P.TOY	PEN		PEN	PARKER
		ANS :	DEPT		
			HOUSEHOLD TOY STATIONARY HARDWARE		

Query-By-Example [Zloof, 1975]

Map of donations to the 2008 presidential campaign by Zip Code and Candidate. Data is current to April 1, 2008 and was provided by the Federal Election Committee via their public website.

Four Main Ideas

- **1**. Support cycle of analysis
- Answer a question by composing a picture
 Best visualization depends on question/task
 Must be able to generate any query

+ Easy to use

Analysis at the Speed of Thought

Transactional Databases are Slow!!

TPC-H, 1 GB, Query 1*:

C Program	0.2 s
mysql	26.2 s
DBMS "X"	28.4 s

*Boncz et al., CIDR 2005

In-Memory Column Stores: 100x

Columns are efficient (MonetDB/X100, C-store, ...)

- Only access needed columns
- Well-matched to processor+memory architecture
- Columns compress better than records
- Optimized for read/append
- Vector semantics instead of set semantics

In-Memory reduces latency enabling interaction

- Memory is cheap, memory hierarchy is expending
- Median business database fits in memory

kx.com

Fully Utilize All Resources

Intel Ivy Bridge Processor (Core i7 3770K) 22 nm, 1.4B 3D transistors 4 3.5 Ghz cores 256-bit AVX vector instructions (16 FADD/FMUL) Resource limits Bandwidth limited: 2 DDR3 2133 = 34 GB/s Compute limited: 4 * 3.5 Ghz * 16 = 224 GFLOPS

Theoretical: 1B values can be summed in 125/5 msecs

2018 Laptop ~ CPU+GPU

10 Teraflops

Supporting Data Enthusiasts

"Although we often hear that data speak for themselves, their voices can be soft and sly.

We need statistics to help them tell their story"

Beginning Statistics with Data Analysis Mosteller, Fienberg, Rourke

Data Integration

Provides context for analysis Semantic integration => people

Promising tools

- Potters wheel
- Google fusion tables
- Data wrangler
- Data blending

Dynamic Workload Driven Data Integration in Tableau K. Morton, R. Bunker, J. Mackinlay, R. Morton, C. Stolte

Wrap Up

Summary

Large number of data enthusiasts

- Business users, with the questions, on a mission
- Excellent analytical thinkers
- Not DBAs, not programmers, not statisticians

You can help them

- Current tools support only basic visual analysis
- In the entire process of analysis in the large

Thank You