
RAY TRACING ON A STREAM PROCESSOR

a dissertation

submitted to the department of computer science

and the committee on graduate studies

of stanford university

in partial fulfillment of the requirements

for the degree of

doctor of philosophy

Timothy John Purcell

March 2004

c© Copyright by Timothy John Purcell 2004

All Rights Reserved

ii

I certify that I have read this dissertation and that, in

my opinion, it is fully adequate in scope and quality as a

dissertation for the degree of Doctor of Philosophy.

Patrick M. Hanrahan
(Principal Adviser)

I certify that I have read this dissertation and that, in

my opinion, it is fully adequate in scope and quality as a

dissertation for the degree of Doctor of Philosophy.

William R. Mark
University of Texas, Austin

I certify that I have read this dissertation and that, in

my opinion, it is fully adequate in scope and quality as a

dissertation for the degree of Doctor of Philosophy.

Mark Horowitz

Approved for the University Committee on Graduate

Studies.

iii

Abstract

Ray tracing is an image synthesis technique which simulates the interaction of light

with surfaces. Most high-quality, photorealistic renderings are generated by global

illumination techniques built on top of ray tracing. Real-time ray tracing has been

a goal of the graphics community for many years. Unfortunately, ray tracing is a

very expensive operation. VLSI technology has just reached the point where the

computational capability of a single chip is sufficient for real-time ray tracing. Super-

computers and clusters of PCs have only recently been able to demonstrate interactive

ray tracing and global illumination applications.

In this dissertation we show how a ray tracer can be written as a stream program.

We present a stream processor abstraction for the modern programmable graphics

processor (GPU) — allowing the GPU to execute stream programs. We describe an

implementation of our streaming ray tracer on the GPU and provide an analysis of

the bandwidth and computational requirements of our implementation. In addition,

we use our ray tracer to evaluate simulated GPUs with enhanced program execution

models. We also present an implementation and evaluation of global illumination

with photon mapping on the GPU as an extension of our ray tracing system. Finally,

we examine hardware trends that favor the streaming model of computation. Our

results show that a GPU-based streaming ray tracer has the potential to outperform

CPU-based algorithms without requiring fundamentally new hardware, helping to

bridge the current gap between realistic and interactive rendering.

iv

Acknowledgements

I would like to thank my wife Jessica for all the love and support she has given me

ever since I started graduate school. She has been my inspiration, and provided en-

couragement when research progress was slow. I’m especially grateful for her calming

influence when I feel stressed, and for her enthusiasm for spending our down time

together playing Nintendo. What more could you want from a wife?

Having Pat Hanrahan as an adviser has been an amazing experience. He was

willing to take a chance on my research from the beginning, and has always pushed

me to fill in that one last detail to elevate the level of my thinking and my work. I

also admire and respect his integrity both as a researcher and as a person.

Thanks to Philipp Slusallek for organizing my first SIGGRAPH speaking opportu-

nity and having me come visit his lab during the summer of 2001. I met some fantastic

friends and collaborators there in Ingo Wald and Jörg Schmittler. I also gained the

confidence and drive to continue my research while I was visiting — though there’s

not much else to do when you don’t speak the language.

James Percy and Bob Drebin from ATI are responsible for the largest contiguous

block of sleep deprived nights in my life to date. Nothing beats hacking away on a

demo at 1am the night before your first SIGGRAPH paper talk. Pradeep Sen and

Eric Chan also lost a lot of sleep to help make those demos shine.

I would also like to thank the many people I have associated with at NVIDIA over

the past few years. David Kirk, Matt Papakipos, and Nick Triantos have generously

provided hardware and driver support for me to abuse. NVIDIA has also generously

provided my funding the last two years through their excellent fellowship program.

Thank you.

v

Jim Hurley and Gordon Stoll were excellent mentors and managers during my

time at Intel. I’m glad I had the chance to share ideas and learn a little bit about

microprocessor research.

I have been fortunate to work with Ian Buck, Bill Mark, Pradeep Sen, Mike

Cammarano, Craig Donner, Henrik Wann Jensen, Jörg Schmittler, and Ingo Wald

as collaborators in my research efforts. I’ve also been lucky to be in a lab where

everyone is willing and able to participate in shaping your research. I’ve had many

fruitful discussions with just about everyone, in particular Kurt Akeley, Mike Houston,

Greg Humphreys, John Owens, Matt Pharr, and Kekoa Proudfoot. Thanks to Ada

Glucksman and Heather Gentner for always making sure I had money, and to John

Gerth for keeping the lab running smoothly.

I’d like to thank my committee members Steve Kerckhoff and Marc Levoy for

passing me on my oral exam and providing insightful feedback. And a special thanks

goes to my readers Pat Hanrahan, Bill Mark, and Mark Horowitz for helping me get

thoughts for this dissertation written coherently.

And last, but not least, thanks to my parents, family, and other friends that I’ve

associated with throughout my graduate career. The encouragement, support, and

board game playing has helped make graduate school a fantastic experience.

vi

Contents

Abstract iv

Acknowledgements v

1 Introduction 1

1.1 Contributions . 2

1.2 Outline . 4

2 Background 5

2.1 Ray Tracing and Global Illumination 5

2.1.1 Parallel Ray Tracing . 10

2.1.2 Interactive Ray Tracing . 11

2.1.3 Ray Tracing Hardware . 12

2.2 Stream Programming . 13

2.3 Programmable Graphics Hardware 16

2.3.1 Near Term GPU Changes . 19

2.3.2 Scatter . 19

3 Streaming Ray Tracer Design 21

3.1 Stream Programming Model . 21

3.1.1 Kernels . 22

3.1.2 Streams . 23

3.2 Streaming Hardware . 24

3.3 Ray Tracing Kernels and Streams . 24

vii

3.3.1 Eye Ray Generator . 27

3.3.2 Traverser . 27

3.3.3 Intersector . 28

3.3.4 Shader . 28

4 Programmable Graphics Processor Abstractions 32

4.1 The Programmable Fragment Processor as a Stream Processor 32

4.1.1 Streams . 34

4.1.2 Flow Control . 36

4.2 Texture Memory as Memory . 39

4.3 Summary . 41

5 Ray Tracing on Programmable Graphics Hardware 43

5.1 Mapping Ray Tracing onto the GPU 44

5.1.1 Kernels . 44

5.1.2 Memory Layout . 45

5.1.3 Data Flow . 46

5.2 Architecture Simulations . 46

5.2.1 Simulation Methodology . 47

5.2.2 SIMD vs. MIMD Architecture 50

5.2.3 Stream Buffer vs. Cache . 55

5.2.4 Summary . 56

5.3 Implementation Results . 57

5.4 Discussion . 61

5.4.1 Short-Term GPU Improvements 62

5.4.2 Long-Term GPU Design Changes 64

5.5 Conclusions . 65

6 Photon Mapping on Programmable Graphics Hardware 66

6.1 Introduction . 66

6.2 Photon Mapping on the GPU . 68

6.2.1 Photon Tracing . 69

viii

6.2.2 Constructing the Photon Map Data Structure 70

6.2.3 The Radiance Estimate . 75

6.2.4 Rendering . 77

6.3 Results . 77

6.3.1 Rendered Test Scenes . 77

6.3.2 Kernel Instruction Use . 80

6.3.3 SIMD Overhead . 82

6.3.4 Interactive Feedback . 82

6.4 Discussion and Future Work . 83

6.4.1 Fragment Program Instruction Set 83

6.4.2 Memory Bottlenecks . 84

6.4.3 Parallel Computation Model 84

6.4.4 Uniform Grid Scalability . 85

6.4.5 Indirect Lighting and Adaptive Sampling 85

6.5 Conclusions . 86

7 Ray Tracing and the Memory–Processor Performance Gap 87

7.1 The Memory–Processor Performance Gap 88

7.2 Streaming . 89

7.2.1 Parallelism . 90

7.2.2 Locality . 91

7.3 CPU-based Ray Tracing . 92

7.3.1 Single CPU Architectures . 92

7.3.2 Multithreaded and Multiprocessor Architectures 93

7.3.3 Locality . 95

7.4 Conclusion . 95

8 Conclusions 97

8.1 Contributions . 97

8.2 Final Thoughts . 98

Bibliography 100

ix

List of Tables

5.1 Ray tracing kernel summary . 48

5.2 Simulation pass breakdown and active rays 54

5.3 GPU ray tracing kernel summary . 58

5.4 GPU ray tracing timings and pass breakdown 60

6.1 GPU photon mapping render times 80

6.2 Photon mapping kernel instruction use 81

x

List of Figures

2.1 The ray tracing algorithm . 6

2.2 Examples of indirect illumination . 7

2.3 Example acceleration structures . 9

2.4 The stream programming model . 14

2.5 The programmable graphics pipeline 16

2.6 The programmable fragment processor 18

3.1 The streaming ray tracer . 26

3.2 Ray-triangle intersection kernel code 29

3.3 Ray tracing data flow diagrams . 31

4.1 The programmable fragment processor as a stream processor 34

4.2 Multiple kernel invocations via multipass rendering 36

4.3 Dependent texture lookup as a pointer dereference 40

5.1 Ray tracing texture memory layout 45

5.2 Test scenes and statistics . 49

5.3 Compute and bandwidth usage . 51

5.4 Compute and bandwidth usage . 52

5.5 Bandwidth consumption by data type 53

5.6 Bandwidth ratio with and without a texture cache 55

5.7 GPU ray tracing test scenes . 59

5.8 Cornell Box test scene images . 62

5.9 Teapotahedron test scene images 62

xi

5.10 Quake3 test scene images . 63

6.1 Photon mapping system flow . 69

6.2 A bitonic sort of eight elements . 71

6.3 Cg code for bitonic merge sort . 72

6.4 Texture memory layout for a grid-based photon map 73

6.5 Building a photon map with stencil routing 74

6.6 Computing the radiance estimate with the kNN-grid 76

6.7 Photon mapping test scenes . 78

6.8 Caustic image over time . 83

7.1 The memory–processor performance gap 88

xii

Chapter 1

Introduction

Computer graphics have become commonplace in our daily lives. Nearly every modern

high budget movie has some sort of digital special effects shot. Even small budget

movies and local television advertisements tend to utilize some graphics technology.

There are even several Saturday morning cartoon shows that are completely animated

and rendered using a computer. Yet aside from a small handful of high production

cost movies, even non-experts can tell when computer rendered special effects are

used.

Why are computer rendered images easy to pick out? Several factors contribute

to an effects shot, including modeling, animation, and rendering. If we focus just

on rendering the answer is simple: time. When realistic imagery is required —

for example when adding computer graphics effects into a live action film — the

computational cost of generating the image increases. This cost increase prevents

many films from achieving the visual fidelity necessary for seamless effects integration.

It also prevents applications like games, that require fast rendering times, from having

realistic imagery.

Most of the high-quality, photorealistic renderings made today rely on a rendering

technique called ray tracing. Ray tracing simulates the interaction of light with sur-

faces, a process which is very computationally expensive. When the rendering does

not have to happen interactively, such as a special effects shot for a movie, it is simply

1

CHAPTER 1. INTRODUCTION 2

a matter of compute time and resources to perform the simulations necessary to gen-

erate realistic images. When rendering speed matters, image quality is often traded

off for increased speed. This trade off point varies from production to production and

plays a large role in determining its achievable level of realism.

We are interested in bridging the gap between realistic and interactive graphics.

State of the art ray tracers today can render scenes at several frames per second on

a supercomputer or on a cluster of high-end PCs. Unfortunately games, CAD, and

other single-user applications, can not rely on every person having a supercomputer or

cluster to run them on. Instead, they exploit commodity graphics processors (GPUs)

and render images with as high of quality as possible. Graphics processors have

improved significantly in the past several years both in terms of speed and in terms of

the type of shading they support. Most recently, they have exposed a fairly general

programming environment which allows developers the freedom to write very realistic

looking shaders.

In this dissertation we explore the reformulation of high quality rendering algo-

rithms for interactive rendering. We show that ray tracing can be expressed as a

streaming computation, and that high performance processors like GPUs are well

suited for supporting streaming computations. We can abstract the GPU as a gen-

eral stream processor. The combination of this reformulation and abstraction allows

us to implement high quality rendering algorithms at interactive rates on commodity

programmable graphics hardware. Furthermore, we will argue that ray tracing is

most naturally and efficiently expressed in the stream programming model.

1.1 Contributions

This dissertation makes several contributions to the areas of computer graphics and

graphics hardware design:

• We present a streaming formulation for ray tracing. Streaming is a natural way

to express ray tracing. Modern high performance computing hardware is well

suited for the stream programming model. The stream programming model

CHAPTER 1. INTRODUCTION 3

helps to organize the ray tracing computation optimally to take advantage of

modern hardware trends.

• We have developed a stream processor abstraction for the programmable frag-

ment engine found in modern graphics processors. This abstraction helps us

to focus on our algorithm rather than on the details of the underlying graphics

hardware. More broadly, this abstraction can support a wide variety of compu-

tations not previously thought of as being mappable to a graphics processor.

• We have also developed an abstraction for the GPU memory system. We show

that dependent texturing allows texture memory to be used as a read only

general purpose memory. We can navigate complex data structures stored in

texture memory via dependent texture lookups. As with our stream processor

abstraction, our memory abstraction has proved useful to a wide variety of

algorithms.

• We have implemented and evaluated a prototype of our streaming ray tracer on

current programmable graphics hardware. Our implementation runs at compa-

rable speeds to a fast CPU-based implementation even though current GPUs

lack a few key stream processor capabilities. The GPU-based implementation

validates our ray tracing decomposition and GPU abstractions.

• We have extended our ray tracer to support photon mapping. Our imple-

mentation solves the sorting and searching problems common to many global

illumination algorithms in the streaming framework. This implementation is

an initial step in demonstrating that the streaming model is valid for advanced

global illumination computations as well as simple ray tracing.

• We analyze how other ray tracing systems are optimized to take advantage

of fundamental hardware trends. We show that these optimizations take ad-

vantage of the same trends that the streaming approach does, only in a much

more cumbersome way than is exposed by the stream programming model. We

conclude that high performance ray tracing is most naturally expressed in the

stream programming model.

CHAPTER 1. INTRODUCTION 4

In this dissertation, we are primarily concerned with studying static scenes – scenes

in which the light sources or eye position can move but scene geometry is fixed. Our

analysis does not account for any scene preprocessing times. Efficient ray tracing of

dynamic scenes is an active research area in the ray tracing community, and is beyond

the scope of this thesis.

1.2 Outline

We begin in chapter 2 with a background discussion of ray tracing, stream pro-

gramming, and modern programmable graphics hardware. We present our stream

programming model and the streaming formulation for our ray tracer in chapter 3.

We then present our abstraction of the programmable graphics processor as a stream

processor in chapter 4.

We describe our implementation of a streaming ray tracer using programmable

graphics hardware in chapter 5. Chapter 6 then describes how we have extended

our ray tracer to perform photon mapping. In chapter 7 we evaluate the stream

programming model in the context of fundamental hardware trends. We then examine

how other ray tracing implementations have adapted to hardware trends and compare

these with the stream programming model.

Finally, we suggest areas of future research, reiterate our contributions, and con-

clude this dissertation in chapter 8.

The core ideas for expressing ray tracing as a streaming computation and for

abstracting programmable graphics hardware as a stream processor were summarized

in work published at SIGGRAPH in 2002 [Purcell et al., 2002]. The photon mapping

work of chapter 6 was published the following year at Graphics Hardware 2003 [Purcell

et al., 2003].

Chapter 2

Background

This dissertation spans three different areas of graphics and computer architecture:

ray tracing, stream programming, and graphics hardware. In this chapter we will

provide the necessary background in each area. We will also look at the related state

of the art work in each area.

2.1 Ray Tracing and Global Illumination

In the real world, light is emitted from light sources as photons. Photons interact

with objects by scattering until they are absorbed by the environment, or captured

by an imaging device such as a camera, sensor, an eye, etc. Ray tracing is an image

synthesis technique that simulates this light interaction with the environment. We

can render an image by placing a virtual sensor in a computer model and simulating

the light emission from the light sources, tracking the light arriving at the sensor.

This simulation is very expensive as only a small fraction of the total light particles

emitted will actually find their way into the sensor to be recorded. We would have

to simulate many particles in hopes of recording enough data to create a reasonable

image.

Instead, we take advantage of a physical property known as reciprocity. That is,

the path a light particle takes from a light to a sensor is reversible. We can therefore

trace particles back from the sensor to the light source without breaking the physical

5

CHAPTER 2. BACKGROUND 6

����� ���	�
� ����

�

�

�

�

�

�

�
�����
����� ��
� � � �� � ��

������� ������

� � !"! ��#��
� � � ��� � ��

�$� !"! �%#��
� � � �� � ��

�&� � # � �

Figure 2.1: The ray tracing algorithm. Primary rays (P) proceed from the sensor
into the scene. Transmissive (T) and reflective (R) rays are spawned at a specular
surface. Each surface interaction also causes a shadow ray (S) to be sent toward the
light source.

simulation. This process saves the computational costs of simulating particles that

never reach the sensor. This process is called ray tracing, and was originally published

by Whitted [1980]. Classic, or Whitted-style ray tracing captures the important

features of a scene to help make it look real: shadows, reflection and refraction, and

diffuse surface shading. Figure 2.1 shows some example rays propagated through a

scene from the viewpoint of a camera.

Global Illumination

Classic Whitted-style ray tracing is perhaps the most basic global illumination al-

gorithm. We call this a global illumination algorithm because the computed light

interaction at a surface depends on other objects in a scene. For example, a shad-

owed surface has no light arriving at it and is rendered black, where as a perfect mirror

CHAPTER 2. BACKGROUND 7

(a) (b)

Figure 2.2: Examples of indirect illumination. (a) Diffuse color bleeding. The wall
casts a bluish color on the tall block. Both blocks give the floor around them a yellow
glow. (b) Caustics. Light focuses through the liquid in the glass and makes a caustic
pattern on the floor. Images courtesy Henrik Wann Jensen.

surface gets its color from the objects it reflects. In contrast, a local illumination al-

gorithm computes the interactions of light with a surface as though it were the only

surface in the scene. We will examine a common local illumination algorithm, called

feed-forward rendering, when we describe how modern graphics hardware computes

images in section 2.3.

Whitted-style ray tracing simulates the effects of direct illumination, shadows, re-

flections, and refractions. However, it does not capture the effects of indirect lighting.

Indirect lighting occurs when light bounces off of one surface to illuminate another.

The two most common effects of indirect illumination are color bleeding and caustics.

One common case where color bleeding occurs is when one diffuse surface reflects

light onto another surface. The light reflected will be shifted toward the color of the

reflecting surface, such that a red wall will illuminate a nearby surface with reddish

light. Figure 2.2a shows the effects of color bleeding. A caustic is caused by light

that has been reflected, refracted, or focused through another material. The result is

a bright spot or band of light on a receiving surface. Figure 2.2b shows an example

caustic. The effects of indirect illumination are subtle but important effects when

rendering realistic scenes.

Researchers recognized the importance of the subtle global effects early on. Dis-

tribution ray tracing [Cook et al., 1984] added some random sampling to renderings

CHAPTER 2. BACKGROUND 8

to account for several effects, including some limited color bleeding. Distribution ray

tracing was extended and generalized with Kajiya’s Monte Carlo path tracing [Ka-

jiya, 1986]. This generalization makes it possible to account for all paths of light

in a scene, given enough random samples. Radiosity methods also capture indirect

illumination effects [Goral et al., 1984; Nishita and Nakamae, 1985]. We will not

investigate radiosity methods in this dissertation since they compute scene illumina-

tion by solving large systems of linear equations instead of directly simulating light

transport as is done in ray tracing.

One difficulty with using pure Monte Carlo path tracing to compute an image is

the large number of samples required to make a smooth looking image. The random

sampling can take a very long time to converge for areas of highly varying intensity

(like caustics). One solution is to first trace rays out from light sources separately

from rays from the sensor and then combine the paths of both tracings when creating

the final images [Chen et al., 1991]. This technique has been refined and extended,

resulting in the photon mapping technique commonly used for high quality renderings

today [Jensen, 1996; 2001]. We will examine the details of this algorithm in more

detail when we discuss mapping it to graphics hardware in chapter 6.

Acceleration Structure

At the center of most ray tracing based global illumination algorithms is the idea of

following a ray (or particle) into a scene and finding the nearest surface interaction

point (hit point or intersection point). It is important to efficiently cull away surfaces

which the ray will not intersect. Otherwise, for very large scenes, a ray would test

against millions of surfaces before finding the nearest one.

This culling is usually accomplished through a data structure called an acceleration

structure. A spatial acceleration structure subdivides the scene into several smaller

regions. These regions can be tested efficiently against each ray, and the geometry

residing in those regions that the ray does not interact with can be safely ignored. An

alternate approach is to use bounding volumes. Bounding volumes surround groups

of complex objects in a simple shape. These simple shapes are tested against each

CHAPTER 2. BACKGROUND 9

(a) Uniform Grid (b) Bounding Volumes (c) Octree

Figure 2.3: Example acceleration structures. (a) The uniform grid divides space into
equal regions or voxels. (b) Bounding volumes group nearby objects into simpler
enclosing volumes. These are often also arranged hierarchically. (c) The octree re-
cursively divides space containing geometry into smaller regions. Notice the empty
spaces are not subdivided further.

ray, and only if the ray intersects the bounding volume does the ray test against the

enclosed geometry.

There are several different types of acceleration data structures explored in the

literature. Figure 2.3 shows several different types of acceleration structures, including

(a) the uniform grid [Fujimoto et al., 1986], (b) bounding volume hierarchy [Rubin

and Whitted, 1980], and (c) octree [Glassner, 1984]. Havran et al. [2000] wrote an

excellent study of several acceleration structures and their relative effectiveness.

The basic ray tracing algorithm changes only slightly with the addition of an

acceleration structure. Before determining if a ray intersects any geometry in the

scene, the ray is tested against the acceleration structure. The acceleration structure

returns to the ray tracer the nearest region containing a subset of geometry. The

ray tracer performs intersection calculations with this geometry. If the ray does not

intersect any geometry in the subset, the structure is again queried and another set

tested. This continues until an interaction is found, or the ray is determined not to

intersect with any of the geometry in the scene.

Acceleration structures are typically built offline, and the construction cost is not

included in the cost of ray tracing a scene. However, this cost approximation is only

valid for static scenes – scenes where only the viewer or light sources change position.

CHAPTER 2. BACKGROUND 10

Scenes where geometry moves around require an acceleration structure to be built

each time an object moves. The design of efficient acceleration structures for dynamic

scenes is an open area of research [Reinhard et al., 2000]. This dissertation focuses

on ray tracing static scenes, with the acceleration structure built as a preprocessing

step. Chapter 6 explores the construction of a photon map data structure, which is

a step toward building an acceleration structure for ray tracing.

2.1.1 Parallel Ray Tracing

Ray tracing is a very computationally expensive algorithm. Fortunately, ray tracing

is quite easy to parallelize. The contribution of each ray to the final image can be

computed independently from the other rays. For this reason, there has been a lot of

effort put into finding the best parallel decomposition for ray tracing. The vast body

of parallel ray tracing work has recently been summarized [Chalmers et al., 2002].

We provide an brief introduction to some of the major design issues for parallel ray

tracers. The reader is referred to that book for more details.

The simplest parallel ray tracers replicate the scene database for every processing

node. For these systems, load balancing the ray tracing computation is the biggest

challenge. However, if the entire scene is too large to fit on a single node or we do

not wish to pay the scene replication overhead, then we have the additional challenge

of distributing scene geometry and/or rays between the nodes.

When the scene database is replicated on all the nodes, or we are using a shared

memory machine, load balancing is fairly straight forward. The ray tracing task is

broken into chunks of work, usually by subdividing the screen into tiles. A master

process assigns a tile to a client whenever that client needs more work to do. If the

tile size is fixed, load imbalance can occur as not all tiles require equal amounts of

computation. Instead, we can make the tile size decrease as the computation nears

the end of a frame. This load balancing mechanism works quite well, and is discussed

in more detail in [Parker et al., 1999a].

Without database replication, parallel ray tracing gets much more difficult. In

this case the scene geometry is often split across multiple processors. If a processor

CHAPTER 2. BACKGROUND 11

does not have the geometry required to perform the ray tracing computation, it must

communicate the task to the appropriate processor(s). This communication can be

expensive.

2.1.2 Interactive Ray Tracing

Even though ray tracing is trivially parallelized, very few interactive ray tracing

systems exist. Interactivity requires the ray tracing system spend very little time on

communication and synchronization. Simply adding processors does not necessarily

increase the performance of a system unless it is properly engineered. Two types of

systems have recently yielded interactive systems: shared memory supercomputers

and clusters of commodity PCs. In both cases, these systems use a collection of

standard microprocessors, each of which is designed for maximum performance on

single threaded programs.

The first interactive ray tracers were realized on massively parallel shared memory

supercomputers. These machines combine the fast inter-processor communication and

high memory bandwidth necessary for interactive ray tracing. Muuss [1995] demon-

strated interactive ray tracing of simple constructive solid geometry (CSG) scenes

using an SGI Power Challenge Array. Parker et al. [1998; 1999a; 1999b] demonstrated

a full-featured ray tracer, called *-Ray, with shadows, reflections, textures, etc. The

system uses data structures tuned for the SGI Origin 2000 cache lines. Additionally,

rays are distributed in varying sized chunks to processors for load balancing.

An alternative to the super computer is a cluster of commodity PCs. These sys-

tems are often more cost effective for the same amount of peak compute performance.

However, clusters are limited by having lower communication bandwidth and higher

communication latency. Wald et al. [2001; 2002] demonstrated a system for interac-

tive ray tracing using a cluster of commodity PCs called RTRT. *-Ray has recently

been ported to run on a cluster of PCs [DeMarle et al., 2003], but our discussion of

*-Ray will focus on the supercomputer version.

CHAPTER 2. BACKGROUND 12

RTRT and *-Ray have much in common. In each, the data structures are carefully

tuned to match the cache line sizes of the underlying machine (Intel Pentium III CPUs

for early versions of RTRT, Pentium 4 for more recent versions).

RTRT also takes advantage of the SSE execution unit [Intel, 2004] available on

Pentium processors. The SSE unit is essentially a separate math unit on the Pentium

chip that can execute multiple math operations in parallel. The execution is SIMD

(single instruction multiple data), meaning that the simultaneous execution must be

for the same instruction, but can be over different data. For example, the SSE unit

can perform four multiplies or four adds at the same time, but not two adds and

two multiplies together. RTRT gathers multiple rays together and tries to execute

most of the ray tracing computation on the SSE units. This strategy provides a nice

computational speedup since the SSE math units are faster than the standard math

unit on the chip and also work in parallel.

Both *-Ray and RTRT share several common characteristics: highly efficient accel-

eration structures, processor specific data structure layout for improved caching, and

efficient code parallelization. Both systems are so tuned to the underlying hardware

that they are effectively non-portable to another platform without serious rewriting.

In chapter 7 we will show that the stream programming model leads to code that can

be automatically tuned to the underlying processor. That means that with proper

language support, our stream formulation for ray tracing could be ported to any sys-

tem and, in theory, only require recompiling to achieve an efficient implementation.

2.1.3 Ray Tracing Hardware

One of the earliest examples of special purpose ray tracing hardware is the LINKS-1

system [Nishimura et al., 1983]. This system was not what we commonly think of as

special purpose hardware as it consisted of several general purpose Intel 8086 nodes

networked together. However, the system was designed as a ray tracing machine and

is an interesting precursor to the cluster ray tracing systems mentioned previously.

Most of the special purpose ray tracing hardware developed in the past few years

can be found on volume rendering boards. The VIRIM [Günther et al., 1995],

CHAPTER 2. BACKGROUND 13

VIZARD [Knittel and Straßer, 1997], and VolumePro [Pfister et al., 1999] boards

all implement ray casting and some limited shading calculations. These renderers do

not take into account shadows, reflections, or refractions.

The most recent piece of ray tracing hardware was designed to render high quality

ray traced images, but not in real-time. The AR250 [Hall, 1999] and AR350 [Hall,

2001] from Advanced Rendering Technologies performed the full ray tracing calcula-

tion including shadows, reflections, and refractions in a custom hardware implemen-

tation. These systems could render scenes much faster than standard software based

systems at the time, but never pushed into interactive rendering.

Finally, the most recent research into custom ray tracing hardware is a system

called SaarCor [Schmittler et al., 2002]. SaarCor is based on the Saarland RTRT

interactive ray tracer [Wald et al., 2001], and effectively implements that system in

silicon. Simulations indicate the system could provide ray tracing at interactive frame

rates with fewer transistors than commodity GPUs require. As of early 2004, early

prototypes of the chip are being implemented on FPGAs at Saarland University.

2.2 Stream Programming

Stream programming and streaming processors have recently become popular topics

in computer architecture. The main motivation for stream processor development is

that semiconductor technology is at a point where computation is cheap and band-

width is expensive. Stream processors are designed to exploit this trend by exploiting

both the parallelism and locality available in programs. The result is machines with

higher performance per dollar [Khailany et al., 2000]. To this end, stream processors

provide hundreds of arithmetic processors to exploit parallelism, and a deep hierarchy

of registers to exploit locality.

The stream programming model constrains the way software is written such that

locality and parallelism are explicit within a program. These constraints allow compil-

ers to automatically optimize the code to take advantage of the underlying hardware.

Of course, stream processors require sufficiently parallel computations to achieve this

CHAPTER 2. BACKGROUND 14

')(�*
+-,./,1032
45
6�207(�2�8 9 +�,7*�+�,./,70:2�4�5<;

=>2�4
? 9 (
8 @BAC25ED0F@

Figure 2.4: The stream programming model. Kernels are functions which can be op-
erated on in parallel. Kernels process records from input streams, and place resulting
records on output streams. Kernels may also be able to read from a global read-only
memory.

higher performance. We will investigate the benefits of the stream programming

model further in chapter 7.

The stream programming model is based on kernels and streams. A kernel is a

function that is going to be executed on over a large set of input records. A kernel

loads an input record, performs computations on the values loaded, and then writes

an output record. The stream programming model is illustrated in figure 2.4.

The more computation a kernel performs, the higher its arithmetic intensity or

locality, and the better a stream processor will perform on it. Streams are the sets of

input and output records operated on by kernels. Streams are what connect multiple

kernels together. Media processing such as MPEG decoding and signal processing

kernels often found in DSPs are large target applications for stream processors.

There have been a variety of general purpose stream processors designed, each with

a corresponding language implementing the stream programming model associated

with the machine. There are also various polymorphic computing architectures like

Smart Memories [Mai et al., 2000] and TRIPS [Sankaralingam et al., 2003] which can

be configured as stream processors or as traditional cache-based processors. We will

focus our discussion on the architectures based around stream processing.

CHAPTER 2. BACKGROUND 15

An early example of a modern stream processor is the MIT RAW machine [Wain-

gold et al., 1997; Taylor et al., 2002]. The RAW machine is made up of several simple

processors on a single chip. The overriding idea of the RAW architecture is to expose

the low level details of the architecture to the compiler. StreaMIT [Gordon et al.,

2002] is the special purpose stream programming language associated with RAW.

The Imagine processor [Khailany et al., 2000] is a streaming processor made up of

several arithmetic units connected to fast local registers and an on-chip memory called

a stream register file. Imagine provides a bandwidth hierarchy with relatively small

off-chip memory bandwidth, larger stream register file bandwidth, and very large

local register file bandwidth. Programs written in the stream programming model

can be scheduled for the processor such that they mainly use internal bandwidth

instead of external bandwidth. Imagine is programmed using StreamC and KernelC

— programming languages for streams and kernels that are a subset of C. These

languages force programs to be written in a stream friendly manner, and are more

general purpose than the StreaMIT language for the RAW processor. However, the

underlying Imagine architecture is still exposed to the programmer when writing a

stream program.

Finally, there is the Merrimac streaming supercomputer [Dally et al., 2002]. Mer-

rimac is a large scale multi-chip streaming computer. Merrimac is programmed in a

language called Brook [Buck, 2004]. Brook is like StreamC and KernelC as it is an

augmented subset of C designed for stream programming. However, one big difference

between Brook and StreamC/KernelC is that Brook does not expose the details of

the underlying architecture to the programmer. This means that programs written

in Brook can be recompiled (instead of rewritten) for other stream machines.

Perhaps the most relevant target that Brook supports is GPUs. A BrookGPU

program [Buck et al., 2004] can compile to run on a standard Intel processor, or

one of several different graphics processors (such as the NVIDIA GeForce FX or ATI

Radeon parts described in the next section). The ray tracing approach presented in

this dissertation was recently reimplemented in BrookGPU in only a couple of days

time. We will examine the advantages of stream programming for ray tracing further

in chapter 7.

CHAPTER 2. BACKGROUND 16

G/HIFJ:H%KMLNI:O�PI:QR

SI:Q�P�R<H�T-J	LNI:O�P�I3Q�R

U V WYX
Z QY[

\>Q�W]J:H�I^V _%QYJ7V O�T

`aX�X�Z V b�QYJ7V OT

SI:QREHc
d�e"e3HI
f-H�W]J:W

G/HIFJ7V b�H
WgQT%hiL�O�Z [%P
OT�W

G/HIFJ7V b�H
WgQT%hiL�O�Z [%P
OT�W

SI3Q
PREHT-J:W

SI3Q
PREHT-J:W

SI3Q
PREHT-J:W

Figure 2.5: The programmable graphics pipeline. The gray boxes show the stages
where the programmable vertex and fragment engines are located. The types of data
passed between each stage of the pipeline are shown by the dotted lines.

2.3 Programmable Graphics Hardware

Ray tracing is not the only way to generate computer images. In fact, the graphics

processor found in nearly every desktop PC uses a very different algorithm. Recall

that a ray tracer computes what parts of a scene are visible at each pixel by following

a ray for each pixel into the scene. In a sense, the image is computed pixel by pixel.

Graphics processors use nearly the opposite algorithm. Images are computed by

drawing each object in the scene, and keeping track of the closest object for every

pixel in the image. Once all the objects are drawn, the correct image is displayed.

Figure 2.5 shows what a modern programmable graphics pipeline looks like. The

scene is fed into the hardware as a sequence of triangles, with colors and normals at

the vertices. The vertex program stage is generally used to transform the vertices from

model coordinates to screen coordinates using matrix multiplication. The rasterizer

CHAPTER 2. BACKGROUND 17

takes the transformed triangles and turns them into fragments — essentially pixels

in memory rather than on the display device. In addition, the rasterizer interpolates

the values of each vertex between other vertices in the triangle so each fragment has a

color and normal value. Fragments then pass through a fragment program stage. This

stage is generally used to modify the color of each fragment with texture mapping or

other mathematical operations. Fragments are finally compared against the stored

value in a depth buffer. Those fragments that are nearer than the stored value are

saved and displayed, while others are discarded.

The programmable vertex and fragment engines found on today’s graphics chips,

such as the NVIDIA GeForce FX 5900 Ultra [NVIDIA, 2003a] and the ATI Radeon

9800 Pro [ATI, 2003] execute user-defined programs and allow fine control over

shading and texturing calculations. Each stage is programmable through OpenGL

ARB extensions [ARB, 2003c; 2003b], vendor specific extensions [NVIDIA, 2002;

2003b], or the DirectX 9 API [Microsoft, 2003]. We will be primarily interested in

the programmable fragment pipeline for this dissertation; it is designed to operate at

the system fill rate (approximately 4 billion fragments per second).

The programming model for the programmable fragment engine is shown in fig-

ure 2.6. Most GPUs have a set of several parallel execution units that implement

the fragment engine. However, the exact number of parallel units is not exposed to

the programmer. Fragment programs are written in a 4-way SIMD assembly lan-

guage [ARB, 2003b; NVIDIA, 2003b], which includes common operations like add,

multiply, dot product, and texture fetch. Fragment programs are not allowed to

perform data dependent branching — the hardware may use SIMD parallelism to

implement multiple fragment processors. All of the operations in a fragment program

are performed in floating point.

GPUs allow memory fetches through texture lookups. They also permit what is

known as a dependent texture lookup. A dependent texture fetch is simply a texture

fetch at an address that has been computed, unlike a standard texture fetch where the

address is determined by interpolated texture coordinates. This feature is useful, for

example, to compute a bumped reflection map for a surface. One texture fetch will

CHAPTER 2. BACKGROUND 18

jlk�m�n�o	p>q�rs t]o:qu:t

v n-o7m�n�o	p>q�rs t]o:qu:t

wu:x�ryEqk�o
zNu:{�ru:xy

|-q�}-o7n
u3q
t

~ {k�t]o�xk-o:t

|-q�yBmBp�q
rs t]o:qu:t

Figure 2.6: The programmable fragment processor. A fragment program can read
data from input registers, constants, texture memory, and temporary registers. Tem-
porary registers store intermediate calculations, and the output registers store the
final color values for the fragment.

grab the perturbed normal at a point from a normal texture map, and that normal

can then be used to index into a reflection map [Kirk, 2001].

An additional feature provided by modern graphics hardware is a specialized re-

duction operator called the NV OCCLUSION QUERY extension [NVIDIA, 2003c]. An

occlusion query simply returns a count of the number of fragments that were drawn

to the framebuffer between the start and end of the query. This capability can be

used to accelerate rendering by drawing simple objects in place of more complex ones

(e.g. bounding boxes instead of true geometry). The occlusion query will return a

zero value if the object is not visible, meaning the complex geometry does not need

to be drawn.

Unfortunately, unlike CPUs, GPUs currently do not virtualize their resources.

Instead, limits are set on how many operations and how many memory references

can be used in a given program. Fragment programs are currently limited to 64 or

1024 instructions, depending on the specific chip and API being used. Only 16 or

32 registers are available to use in a program, and as few as four levels of dependent

texture fetches are supported. Additionally, many GPUs allow only a single output

CHAPTER 2. BACKGROUND 19

value to be computed per fragment. The specific resource limits depend on the vendor,

card, and extension used to program the GPU.

2.3.1 Near Term GPU Changes

Our ray tracing and photon mapping implementations discussed in subsequent chap-

ters use the DirectX 9 class hardware discussed previously. As the hardware continues

to evolve, we expect that several features missing from the fragment programming

model will be added:

• Data dependent branching in fragment programs

• Increased program length

• Increased dependent texture fetching limits

• Multiple outputs

Our analysis of the ray tracing system presented in chapter 5 evaluates the impact

of some of these improved capabilities.

2.3.2 Scatter

Nearly as important as features that are available on the GPU are features that

are not available. There are several such missing features, but perhaps the most

important one is the scatter operation for fragment programs. Simply stated, scatter

is the ability to compute an output address to write fragment data to. GPUs provide

the ability to perform random memory reads through dependent texture fetches. A

scatter would be similar to computing a dependent texture write. This lack of a scatter

capability restricts the types of algorithms that can be run efficiently on the GPU.

We will explore several algorithms that could be much more efficient with a scatter

operation (such as sorting). Other algorithms do not seem possible to implement

without scatter (such as building acceleration structures). We will soon see graphics

architectures that allow a multipass scatter operation by feeding the framebuffer data

CHAPTER 2. BACKGROUND 20

from one rendering pass back through the pipeline as primitive data. Unfortunately,

a single pass scatter operation is not on the horizon for future graphics architectures.

Chapter 3

Streaming Ray Tracer Design

In this chapter, we describe how we decompose ray tracing for the stream program-

ming model. We first define the stream programming model we use for this thesis.

We’ll then briefly enumerate the underlying hardware support we expect. Finally, we

describe the way we decompose ray tracing for the stream programming model.

3.1 Stream Programming Model

In section 2.2 we saw several examples of stream processors and languages that imple-

ment the stream programming model. When we designed our streaming ray tracer,

we did not target a specific programming language or architecture. Instead, the de-

sign was based on our assumption that we would have a processor that was a cross

between Imagine and a GPU. We designed the ray tracer assuming much the same

functionality that can be expressed in KernelC and StreamC. Brook [Buck et al.,

2004] is the closest language to what we envisioned. Since our programming model

is slightly different, we will enumerate what we assumed it could support. The pro-

gramming model we present is idealized. We present an evaluation of two different

architectures that implement this programming model in chapter 5.

21

CHAPTER 3. STREAMING RAY TRACER DESIGN 22

3.1.1 Kernels

Recall that a kernel is essentially a specialized function call. Kernels are expected to

be invoked on many different records all requiring the same processing. In the stream

programming model, kernels are designed to be executed in parallel. In particular,

kernels must be stateless — the results of a kernel call can not depend on a previous

invocation of that kernel by another record.

The kernels in our streaming ray tracer are allowed to access read-only global

memory. This is a different approach than taken by KernelC. KernelC required

all memory access to be through streams. Global memory could be accessed by

building an index stream — essentially a stream of memory addresses. That stream

would fetch the data from memory, and the data could be used in an input stream

to another kernel. This style of global memory access puts a large burden on the

application programmer to split kernels into several pieces whenever global memory

is required and the addresses are unknown at compile time. Instead, we allow read-

only access to global memory directly in a kernel. This capability ends up being

strictly a programmer convenience, as kernels could be split at memory references

automatically by the underlying compiler.

Our kernels are also able to perform data dependent branches. This capability is

important to ray tracing for two reasons. First, ray tracing finds the nearest visible

point by marching rays through an acceleration structure, intersecting geometry as

it goes. If we write ray tracing as a single kernel, the kernel must be able to change

between traversing the structure and intersecting geometry. Second, each part of the

acceleration structure can hold a different amount of geometry. We can not determine

before kernel invocation how many intersection tests need to be done. We will examine

the impact of branching at the end of chapter 5.

Finally, kernels can perform both integer and floating point arithmetic operations.

Additionally, kernels support data types of both float and integers up to four elements

wide and provide short vector math operations for those types. Much of the ray

tracing calculation is vector math. GPUs operate on these four wide types natively,

and they simplify many calculations that we have to do. Kernels support standard

CHAPTER 3. STREAMING RAY TRACER DESIGN 23

arithmetic operations on these data types plus corresponding graphics operations like

dot product.

3.1.2 Streams

A stream is a set of records that a kernel operates over. Generally speaking, a kernel

takes a stream of records as input and produces a stream (or streams) of records as

output. Kernels are allowed to only have a single input stream. This stream may

contain data generated by several different kernels, but only the single input stream

is visible to the kernel. By only allowing a single stream, we do not have to figure

out what to do when two input streams have different length. This restriction takes

away some of the flexibility of our stream programming model, but this case does not

come up for a ray tracing computation and is thus not an issue.

We do allow kernels to generate multiple output streams, and output to these

streams may be conditional. A kernel may write to zero or more of its possible

destination streams. Conditional streams are especially useful for a ray tracer. During

shading, a ray can generate several shadow rays, along with reflection and refraction

rays. However, not all surfaces generate all types of rays. Conditional output allows

a complex shading model to fit naturally into the streaming framework. Additionally,

rays can exit the bounds of a scene during rendering. These rays contribute nothing

to the final image. Kernels can discard these rays by not writing them to the output

stream, avoiding bandwidth and computation overhead for useless rays.

Finally, our programming model has a modest ordering requirement for streams.

If a kernel has no conditional output, then streams are required to remain in order.

That is, the first element of the input stream generates the first element of the output

stream. With a conditional output, this requirement is relaxed. Split streams do not

have to maintain relative order.

CHAPTER 3. STREAMING RAY TRACER DESIGN 24

3.2 Streaming Hardware

In this section, we want to briefly describe the desired hardware for implementing

our stream programming model. In chapter 5 we will present results from running

our ray tracer on simulated hardware like this, as well as simulated hardware much

more like a GPU. We’d like to use our stream model to show potential benefits of

new GPU features. Our model assumes:

• 32-bit × 4-wide floating point math units and registers. The ray tracer will be

working primarily with 3- and 4-vector quantities (i.e. color, vertex position, ray

direction and origin). As such the native data type should be a four element

vector. In addition, common graphics operations like dot product and cross

product should be very fast.

• MIMD execution units. Our stream programming model allows data dependent

branching within a kernel. We want MIMD (Multiple Instruction Multiple

Data) execution units to implement the branching in hardware efficiently.

• On-chip stream buffer. The data structures passed between kernels can be quite

large, and depending on the granularity of the computation can happen quite

often. An on-chip stream buffer minimizes off-chip bandwidth.

• Fast local cache for read-only global data. Geometry, materials, and the accel-

eration data structure are among the read only data in our system.

We assume some fairly basic hardware capable of implementing our stream ab-

straction. The primary goal of this dissertation is to show that the stream program-

ming model is a good model for ray tracing, not to describe the proper hardware to

implement that model.

3.3 Ray Tracing Kernels and Streams

The challenge is then to map ray tracing onto our streaming model of computation.

This is done by breaking the ray tracer into kernels. These kernels are chained

CHAPTER 3. STREAMING RAY TRACER DESIGN 25

together by streams of data. In this section, we show how to reformulate ray tracing

as a streaming computation.

We need to make some decisions up front about the type of scenes we will be able

to ray trace before we can formulate the ray tracer for streaming. We need to define

the type of geometric primitives our ray tracer can handle, whether to support static

or dynamic scenes, and the type of acceleration structure we will use.

We assume that all scene geometry is represented as triangles. Ray tracers often

can render scenes made of several different geometric primitives. The literature is full

of ray-object intersection algorithms (see An Introduction to Ray Tracing [Glassner,

1989] for a good survey). However, we believe focusing only on triangles is valid for

several reasons. First, graphics hardware supports only triangle rendering. Other

surfaces like splines, spheres, and other shapes can be specified, but they are trans-

formed into triangles before rendering anyway. Modeling programs and scanning

software produce models made of triangle meshes. Finally, ray tracing is much sim-

pler, and in many cases more efficient [Wald et al., 2001], when only a single primitive

is allowed. For streaming computations, this restriction means all rays can be handled

by the same small set of kernels which simplifies the data flow of the system.

Our ray tracer is designed to render static scenes. We assume triangles are stored

in an acceleration data structure before rendering begins. We will not consider the

cost of building this data structure. Since this operation may be expensive, and may

not map well to the stream programming model, this assumption implies that the

algorithm described may not be efficient for dynamic scenes.

We also decided to use a uniform grid to accelerate ray tracing. There are many

possible acceleration data structures to choose from: bounding volume hierarchies,

bsp trees, k-d trees, octrees, uniform grids, adaptive grids, hierarchical grids, etc. We

chose uniform grids for two reasons. First, many experiments have been performed

using different acceleration data structures on different scenes [Havran et al., 2000].

From these studies no single acceleration data structure appears to be most efficient;

all appear to be within a factor of two of each other. Second, uniform grids are

particularly simple for hardware implementations. Accesses to grid data structures

require constant time; hierarchical data structures, in contrast, require variable time

CHAPTER 3. STREAMING RAY TRACER DESIGN 26

� ��E��:�

�g�^� �B�%�
� �7� ������ ���
� �]�
���"�3���Y�:�

� �7� ������ ���
� �]�
� �^� ��%�� ���

�������3�����
� �Y�:���^� �� �

�������3�����
� ��7�E�� � �����
������� �:�

��%������%��:�Y�:�
�>������� �%�i >�Y¡%�

¢ �-����:�����]�
� �7� ��%�� ���

� �:�Y£%��:���
¤ ������ ��:�Y�7� ��
�/�7�7���]�1���:�

��������3���:�
¥ ¡%�� >�Y¡%�

 ���¡%�

 ���¡%¦3§/��¨����
© �� �:�

© � ¨���]� �� ��	ª «��
�Y�:���

��� ���

Figure 3.1: The streaming ray tracer. Ray tracing can be broken down into several
core kernels, represented by boxes in this diagram: eye ray generation, acceleration
structure traversal, triangle intersector, and a shader that computes colors and sec-
ondary rays. The inputs to each kernel are shown to the left of the box. The types
of stream records passed between kernels are shown by the dotted lines.

per access and involve pointer chasing. Code for grid traversal is also very simple and

can be highly optimized in hardware.

We have split the streaming ray tracer into four kernels: eye ray generation, grid

traversal, ray-triangle intersection, and shading, as shown in figure 3.1. This split is

not mandated by our stream programming model. Instead, it is a result of our desire

to eventually run the ray tracer on a GPU which lack branching within a fragment

program. We explain how we work around the lack of branching in chapter 4, and

analyze the effects of the workaround in chapter 5.

The eye ray generator kernel produces a stream of viewing rays. Each viewing

ray is a single ray corresponding to a pixel in the image. The traversal kernel reads

the stream of rays produced by the eye ray generator. The traversal kernel steps a

CHAPTER 3. STREAMING RAY TRACER DESIGN 27

ray through the grid until the ray encounters a voxel containing triangles. The ray

and voxel address are output and passed to the intersection kernel. The intersection

kernel is responsible for testing a ray with all the triangles contained in a voxel. The

intersector has two types of output. If ray-triangle intersection (hit) occurs in that

voxel, the ray and the triangle that is hit is output for shading. If no hit occurs,

the ray is passed back to the traversal kernel and the search for voxels containing

triangles continues. The shading kernel computes a color. If a ray terminates at this

hit, then the color is written to the accumulated image. Additionally, the shading

kernel may generate shadow or secondary rays; in this case, these new rays are passed

back to the traversal stage. The following sections detail the implementation of each

ray tracing kernel.

3.3.1 Eye Ray Generator

The eye ray generator is the simplest kernel of the ray tracer. Given camera parame-

ters, including viewpoint and a view direction, it computes an eye ray for each screen

pixel. The kernel is invoked for each pixel on the screen, generating an eye ray for

each. The eye ray generator also tests the ray against the scene bounding box. Rays

that intersect the scene bounding box are processed further, while those that miss

are terminated.

3.3.2 Traverser

The traversal stage searches for voxels containing triangles. The first part of the

traversal stage sets up the traversal calculation. The second part steps along the

ray enumerating those voxels pierced by the ray. Traversal is equivalent to 3D line

drawing and has a per-ray setup cost and a per-voxel rasterization cost.

We use a 3D-DDA algorithm [Fujimoto et al., 1986] for this traversal. After each

step, the kernel queries the grid data structure. If the grid contains a null pointer,

then that voxel is empty and the ray is output into the stream of rays to be traversed

again. If the pointer is not null, the voxel contains triangles. In this case, a ray-voxel

CHAPTER 3. STREAMING RAY TRACER DESIGN 28

pair is output and the ray is marked so that it will be tested for intersection with the

triangles in that voxel.

The traversal setup is performed once per ray. The main traversal kernel marches

a ray one step through the voxel grid. This means each step a ray takes through

a voxel is done as a separate iteration of the traversal kernel. At the end of the

kernel, the ray is either output to the rays needing traversing stream or the rays to

be intersected stream.

3.3.3 Intersector

The triangle intersection stage takes a stream of ray-voxel pairs and outputs ray-

triangle hits. It does this by performing ray-triangle intersection tests with all the

triangles within a voxel. If a hit occurs, a ray-triangle pair is passed to the shading

stage. We compute ray-triangle intersections using the method described by Möller

and Trumbore [1997]. A ray-triangle intersection kernel can be found in figure 3.2.

Because triangles can overlap multiple grid cells, it is possible for an intersection

point to lie outside the current voxel. The intersection kernel checks for this case and

treats it as a miss. Note that rejecting intersections in this way may cause a ray to be

tested against the same triangle multiple times (in different voxels). It is possible to

use a mailbox algorithm to prevent these extra intersection calculations [Amanatides

and Woo, 1987], but mailboxing is difficult to implement efficiently when multiple

rays are traced in parallel.

As with the traversal stage, we have implemented the ray-triangle intersection

kernel to perform a single ray-triangle intersection. Each ray is cycled through the

intersection kernel for each triangle in the voxel. After all the triangles have been

intersected, the decision is made whether to send the ray to the traversal or shading

kernel.

3.3.4 Shader

The shading kernel evaluates the color of the surface intersected by the ray at the

hit point. Shading data consists of vertex normals and vertex colors for each triangle

CHAPTER 3. STREAMING RAY TRACER DESIGN 29

// ro, rd are ray origin and direction

// list pos contains the triangle list entry

// h is current best hit

float4 IntersectTriangle(float3 ro, float3 rd, int list pos, float4 h){
float tri id = memfetch(list pos, trilist);

float3 v0 = memfetch(tri id, v0);

float3 v1 = memfetch(tri id, v1);

float3 v2 = memfetch(tri id, v2);

float3 edge1 = v1 - v0;

float3 edge2 = v2 - v0;

float3 pvec = Cross(rd, edge2);

float det = Dot(edge1, pvec);

float inv det = 1.0/det;

float3 tvec = ro - v0;

float u = Dot(tvec, pvec) * inv det;

float3 qvec = Cross(tvec, edge1);

float v = Dot(rd, qvec) * inv det;

float t = Dot(edge2, qvec) * inv det;

bool validhit = select(u >= 0.0, true, false);

validhit = select(v >= 0.0, validhit, false);

validhit = select(u+v <= 1.0, validhit, false);

validhit = select(t < h[0], validhit, false);

validhit = select(t >= 0.0, validhit, false);

return select(validhit, float4(t, u, v, tri id), h);

}

Figure 3.2: Code for the ray-triangle intersection kernel.

and is stored in memory much like triangle data. The hit information that is passed

to the shader includes the triangle number. We access the shading information by a

simple lookup for the particular triangle specified.

By choosing to generate different shading rays, we can implement several flavors of

ray tracing using our streaming algorithm. Figure 3.3 shows a simplified flow diagram

for ray casting, Whitted-style ray tracing, path tracing, and shadow casting, along

with an example image produced by our system for each flavor.

The shading kernel optionally generates shadow, reflection, refraction, or ran-

domly generated rays. These secondary rays are placed in the stream of rays pro-

cessed by the traverser. Each ray is also assigned a weight, so that when it is finally

CHAPTER 3. STREAMING RAY TRACER DESIGN 30

terminated, its contribution to the final image may be simply added into the im-

age [Kajiya, 1986]. This technique of assigning a weight to a ray eliminates recursion

and simplifies the control flow.

CHAPTER 3. STREAMING RAY TRACER DESIGN 31

Generate
Shadow Rays

Find Any
Intersection

Shade Hit

¬�®%¯:°Y±:
²´³ iµ>° ³%¶

·´¸ ®�¹�º>�°¯: ¶ ±
» ®-±:�¯ ¶
¼]± ¸ ½ ®

¾�¿�°
¹�iÀ ¸ ±

Generate
Eye Rays

Find Nearest
Intersection

Shade Hit
L+2

Generate
Eye Rays

Find Nearest
Intersection

Shade Hit
L

Shadow Caster Ray Caster Whitted Ray Tracer Path Tracer
(a) (b) (c) (d)

Figure 3.3: Ray tracing data flow diagrams. The algorithms depicted are (a) shadow
casting, (b) ray casting, (c) classic Whitted-style ray tracing, and (d) path tracing.
Shadow casting takes initial visibility information generated outside our system and
traces shadow rays from those visible surface locations. For ray tracing, each ray-
surface intersection generates L + 2 rays, where L is the number of lights in a scene,
corresponding to the number of shadow rays to be tested, and the other two are
reflection and refraction rays. Path tracing randomly chooses one ray bounce to
follow and the feedback path is only one ray wide. Our path tracer only generates a
single eye ray per pixel. The Stanford bunny image was generated by each algorithm.

Chapter 4

Programmable Graphics Processor

Abstractions

In the previous chapter, we described the stream programming model and a stream-

ing formulation for ray tracing. In this chapter we show how we can abstract the

programmable fragment engine in current GPUs as a stream processor. The GPU

will serve as our implementation substrate for the streaming ray tracer (chapter 5)

and our extension to global illumination via photon mapping (chapter 6).

We will present two abstractions for the GPU: one for multipass rendering through

the fragment engine and another for the memory subsystem. These abstractions are

key for our ray tracing and photon mapping implementations, and have been used

by other researchers using the GPU for general purpose computation. At the end

of this chapter, we examine the impact of GPU limitations on the efficiency of our

algorithm.

4.1 The Programmable Fragment Processor as a

Stream Processor

We would like to be able to use the computational power of the GPU to perform the

ray tracing computation. Unfortunately, as we saw in chapter 2, ray tracing is a very

32

CHAPTER 4. PROGRAMMABLE GPU ABSTRACTIONS 33

different type of computation than what GPUs were built to do. Even with the high

amount of programmability available on the GPU, it is not obvious how to map all

the pieces of a ray tracer onto the GPU pipeline. In this section, we show how to

think about the fragment processor as a limited general purpose stream processor.

We discussed the basic flow for feed-forward rendering on a GPU in chapter 2.

This task is the one the GPU is designed for. The basic idea is that the GPU renders

objects by turning them into fragments. After all objects are drawn, the fragment

closest to the viewer is displayed on the screen. Our goal is to use the fragment engine

as a stream processor. As such, we will generally ignore the rest of the graphics

pipeline and focus on feeding the appropriate data to the fragment engine.

The first step then is to feed streams to the fragment engine to process. The

fragment engine processes fragments that are generated by the rasterizer. These

fragments come from geometry that has been transformed by the vertex program

portion of the pipeline. Our goal is to execute a computation at every screen pixel (the

ray tracing computation). A screen aligned square is the simplest geometry that will

generate a fragment for every screen pixel. If we disable the pipeline operations that

happen after fragment program execution (like depth test, stencil test, alpha blend,

etc), the result displayed on the screen is the result of the computation performed by

the fragment program.

Conceptually, this framework is all we need to get a ray tracer to work. We simply

write a fragment program that expresses the entire ray tracing computation for a pixel,

draw a square, let the fragment program execute over all the fragments, and come

away with a ray traced image. This is exactly how we would write a ray tracer for

a fully general MIMD stream processor. Unfortunately, current GPUs have several

limitations that make this approach impossible including limits on program length,

limits on dependent texture lookups, and the lack of data dependent branching.

We can overcome most of the limitations of the GPU with multipass rendering

techniques. We split the ray tracing kernel into several smaller kernels, with one kernel

per major ray tracing operation as we did in chapter 3. After we finish one rendering

pass, we store output stream data into texture memory. We can then run another

rendering pass (by drawing another square) with a different fragment program that

CHAPTER 4. PROGRAMMABLE GPU ABSTRACTIONS 34

ÁÃÂ)Ä�Å�Æ�ÇÈ/Ç7É:Ê�Ë�ÌBÍ
Á^Î�ÊÉ7Ä�ÊÏ Í

Á3ÐEÆ-Ç1Å�Æ-Ç�È/Ç7É:Ê�ËÌÑÍ

Ò Ê%Ó-Ç7Æ�É:ÊiÔCÊÌEÕÉFÖ
Á^×>Ê�Ë�ØBÐEÄ�Ï ÖBÔCÊÌEÕÉFÖ
Í

Â)Ä
Å�Æ-Ç	ÙÉ3Ë
ÚÌEÊÄ-Ç:Û
Ù´É:Ë�Ú�Ì<Ê�Ä-Ç	Ü&É3Õ
ÚÉ:ËÌ

ÐEÆ-Ç7Å
Æ-Ç�ÙÉ:Ë�Ú�Ì<Ê�Ä-Ç:Û

Figure 4.1: The programmable fragment processor as a stream processor. The fig-
ure shows the GPU-centric term and the corresponding stream processing term in
parentheses.

reads the stored data from the previous pass back from texture memory and continues

the computation. We do this until the computation is finished.

Our basic stream processor abstraction is fairly straight forward. Figure 4.1 shows

the inputs and outputs for a programmable fragment processor. Input, output, and

functional unit is labeled with its graphics name (e.g. fragment program) and its

stream programming name (e.g. kernel). We treat the fragments produced by the

rasterizer as an input stream, the fragment program as a kernel, and the fragments

written to the framebuffer as an output stream.

The following sections expound on our abstraction. We will not address the

straight forward mapping between kernels and fragment programs further. Instead we

will focus on the mapping of fragments and textures to streams, and on flow control.

4.1.1 Streams

As we already mentioned, the set of fragments produced by the rasterizer constitute

an input stream to a kernel. The rasterizer generates a bunch of data associated with

each fragment called interpolants. These data include values such as screen position

of the fragment, color, and a set texture coordinates. They are called interpolants

CHAPTER 4. PROGRAMMABLE GPU ABSTRACTIONS 35

because the values are specified at geometry vertices and the rasterizer interpolates

the values between vertices for each fragment.

Interpolants are a compact way to specify an input stream of data to a kernel.

However, the number of interpolants is limited and stream data can not always be

computed via interpolation. For example, when an input stream is an arbitrary

collection of data it is impossible to generate through interpolation.

When simple interpolation fails, we instead store stream data in texture memory.

The rasterizer still produces an input stream of fragments that initiate computation,

however the interpolants now describe where to fetch data from texture memory. If

data is stored in texture memory aligned with the square we use to initiate compu-

tation, we can use the interpolation hardware to give us the addresses to fetch from.

Note that this texture fetch is not a dependent texture fetch as the texture coordi-

nates are provided by the rasterizer. The only change in the kernel is that it must

initiate the memory fetch.

This method of storing stream data in texture memory is also used during mul-

tipass rendering. In this case, the output stream of one kernel is copied into texture

memory. When the rasterizer generates fragments from the next square, the frag-

ments have the appropriate texture coordinates to fetch the results from the previous

kernel. This process is illustrated in figure 4.2. If the data being read does not fit

into a single texture, we may need to read multiple times. Similarly, we may need to

write multiple times by repeating the rendering pass for each output.

The copying of stream data into texture memory happens after all the fragments

have been processed from a rendering pass. The hardware issues a barrier opera-

tion, and the framebuffer contents are copied into texture memory as read-only. If

framebuffer memory and texture memory are physically the same on the hardware,

this operation can be performed with a pointer renaming instead of a true copy. The

operation can also be as expensive as a copy to the host CPU and re-download of

texture data. In either case, we end up using texture memory to store stream data.

CHAPTER 4. PROGRAMMABLE GPU ABSTRACTIONS 36

Ý-Þ�ß-à7á
â3Þ�ãEÞ�ä<å�â�æ

ç)è�é
á-à�êâ:ë�ì�ä<Þè�à:í
êâ:ë�ìäEÞè�à	îNâ:å�ì�â3ë�ä

ï á-à7é�á�à�êâ:ë�ìäEÞè-à�í

Ý-Þ�ß-à7á
â3Þ�ãEÞ�ä<å�â�æ

ç)è�é
á-à�êâ:ë�ì�ä<Þè�à:í
êâ:ë�ìäEÞè�à	îNâ:å�ì�â3ë�ä

ï á-à7é�á�à�êâ:ë�ìäEÞè-à�í

ðòñôóõó ö

ðòñôóõóø÷

Figure 4.2: Multiple kernel invocations via multipass rendering. This figure shows
how multipass rendering techniques fit into the stream programming model. After
a rendering pass, the set of output fragments are conceptually copied into read-only
memory. They can now act as an input to the following fragment program.

4.1.2 Flow Control

The most difficult part of mapping the stream programming model to current graphics

hardware is flow control. Looping and flow control decisions are made on the host.

Static flow control decisions simply require binding the fragment programs in the

proper order. Dynamic flow control requires a bit more work. Dynamic flow control

can happen when when we need to loop over data or when we want to implement

conditional output streams.

Current graphics hardware does not allow dynamic flow control within a frag-

ment program. Despite this limitation, programs with loops and conditionals can be

CHAPTER 4. PROGRAMMABLE GPU ABSTRACTIONS 37

mapped to graphics hardware using the multipass rendering technique presented by

Peercy et al. [Peercy et al., 2000]. To implement a conditional using their technique,

the conditional predicate is first evaluated using a sequence of rendering passes, and

then a stencil bit is set to true or false depending on the result. The body of the

conditional is then evaluated using additional rendering passes, but values are only

written to the framebuffer if the corresponding fragment’s stencil bit is true.

Although their algorithm was developed for a fixed-function graphics pipeline,

it is the inspiration for our algorithm for dynamic flow control on a programmable

graphics pipeline. To explain our algorithm, we will examine how we can implement

data dependent looping. Assume we have a fragment program that executes the body

of our loop called bodyfp. We add a single additional output value to bodyfp that

represents the “state” of the computation (i.e. whether the computation is finished

or not). Immediately after executing bodyfp, we execute a second fragment program

called donefp. donefp reads the state value written by bodyfp and issues a KILL

instruction if the state indicates the computation is done for that fragment. The KILL

prevents that fragment from being drawn to the framebuffer. donefp is surrounded

by an occlusion query [NVIDIA, 2003c], which counts the number of fragments that

get drawn to the framebuffer. The host runs bodyfp and donefp within a loop that

terminates when the value returned by the occlusion query is zero. When the occlusion

query returns zero, all the fragments executing bodyfp have their state output set to

done, and the loop body is done.

This simple algorithm solves the problem of data dependent looping, but is not

very efficient. When bodyfp executes, any fragments in the done state have to move

their inputs to their outputs. These moves end up consuming computation and band-

width resources that could be better used moving the computation forward. We can

take advantage of early-z occlusion culling [Kirk, 2001] to make our looping much

more efficient. Instead of using donefp to mask off framebuffer writes, we use it to

modify the depth buffer value for each fragment based on the stored state value for

that fragment. Fragments that are still executing set the depth buffer to one value

(z1), while those that are done set it to another value (z2). The loop over bodyfp

and donefp is performed on the host exactly as before with two small changes: we

CHAPTER 4. PROGRAMMABLE GPU ABSTRACTIONS 38

wrap the occlusion query around bodyfp instead of donefp and we set the depth test

to be GL EQUAL. When bodyfp executes, all the fragments are given a depth of

z1. Fragments in the done state (with depth z2) are not updated. Early-z occlusion

culling discards the fragments with depth z2 before they execute bodyfp, so they do

not consume any fragment program resources. When all fragments have been dis-

carded by early-z occlusion culling, the occlusion query count will be zero and the

loop will terminate. This optimization is very fragile. Certain operations within a

fragment program can disable early-z occlusion culling, and the granularity of the

early-z occlusion culling cannot be controlled. This optimization also requires us to

copy our input data to the output target of the program before rendering (essentially

double buffering the data). With this copy operation, fragments discarded by early-z

occlusion culling will maintain their original values and the rest of the fragments will

update their values with the execution of bodyfp.

The mechanism we have described for performing data dependent looping can be

used to simulate conditional output streams as well. We can use the “state” output

to store a value indicating which conditional output stream a fragment belongs to.

We assign a unique depth value to each possible output state. We can then execute

a fragment program over the fragments of a particular output stream by using the

GL EQUAL depth test as we did for data dependent looping. The challenge then,

is to choose the best order to evaluate each conditional output stream. The order

we evaluate the different output streams can impact the overall performance of the

system.

Our method for choosing which kernel to run is motivated in part by Delany’s im-

plementation of a ray tracer for the Connection Machine [Delany, 1988]. The traversal

and intersection kernels of a ray tracer both involve loops and conditional outputs.

There are various strategies for nesting the loops and choosing which kernel to execute.

The simplest algorithm would be to step through voxels until any ray encounters a

voxel containing triangles, and then intersect that ray with those triangles. However,

this strategy would be very inefficient when run in parallel, since during intersection

only one or a few rays will be active. Most rays will not yet have encountered a

voxel with triangles. On a SIMD machine like the Connection Machine, this strategy

CHAPTER 4. PROGRAMMABLE GPU ABSTRACTIONS 39

results in very low processor utilization. For graphics hardware, this strategy yields

an excessive number of passes. The following is a more efficient algorithm:

generate eye ray()
while (any(active(ray))) {

if (oracle(ray))
traverse(ray)

else
intersect(ray)

}
shade(ray)

After eye ray generation, the ray tracer enters a while loop which tests whether any

rays are active. Active rays require either further traversals or intersections; inactive

rays have either hit triangles or traversed the entire grid. Before each pass, an oracle

is called. The oracle chooses whether to run a traverse or an intersect pass. Various

oracles are possible. The poorly performing algorithm described previously runs an

intersect pass if any rays require intersection tests. A better oracle, first proposed by

Delany, is to choose the pass which will perform the most work. This can be done by

calculating the percentage of rays requiring intersection vs. traversal with occlusion

queries. In our experiments, we found that performing intersections once 20% of the

rays require intersection tests produced the minimal number of passes, and is within

a factor of two to three of optimal for a SIMD algorithm executing a single kernel per

rendering pass.

4.2 Texture Memory as Memory

Traditionally, texture memory has been used to store the textures that are applied to

geometry in a scene. Conceptually, the rasterizer produced fragments which each had

their own texture coordinates which served as indexes into a two dimensional region

of memory containing color information. A major limitation of this technique is that

the address to fetch from memory could not be computed, but was rather a property

of the geometry being rasterized.

CHAPTER 4. PROGRAMMABLE GPU ABSTRACTIONS 40

Mesh Data

v0(0,0,0)

v3(0,2,0)

v1(2,0,0)

v2(2,2,0)

t0

t1

t2

t3 v4

Texture Memory Layout

Triangles

Verticies

t0

(0,1,4)

t1

(1,2,4)

t2

(2,3,4)

t3

(3,0,4)

v0

(0,0,0)

v1

(2,0,0)

v2

(2,2,0)

v3

(0,2,0)

v4

(1,1,0)

Figure 4.3: Dependent texture lookup as a pointer dereference. A simple four triangle
mesh can be stored in two textures: one storing triangle vertex numbers, the other
storing actual vertex data. A set of dependent texture fetches allows a fragment
program to retrieve the vertex data for a given triangle.

Graphics processors have recently added the ability to perform what is known

as a dependent texture lookup. Dependent texture fetching allows the address being

fetched from texture memory to be computed by the fragment program. It also allows

the results of a memory lookup to be used to compute another memory address. This

feature was added to the graphics processor to enable interesting effects like reflective

bump mapping to run as a single rendering pass [Kirk, 2001].

The side benefit of allowing dependent texture lookups is that we can use the

texture memory subsystem as a general read-only memory. We are interested in per-

forming general computations on the graphics hardware. Many algorithms involve

complex data structures and lookup of elements within these structures. As an illus-

trative example, consider a simple triangle mesh data structure as shown in figure 4.3.

To simplify the discussion, we will consider only 1D textures. With 1D texture map-

ping, the i-th element is stored at texture location i. The texture coordinate is the

memory address.

Each triangle is stored as an RGB texture, with the R, G, and B channels holding

the location in the vertex texture of vertex 0, 1, and 2 respectively. The triangle vertex

texture is another RGB texture storing the 3D coordinates of the vertex, with the R,

G, and B channels storing x, y, and z respectively. If we want to know the locations of

the three vertices of a triangle, we simply perform three separate dependent texture

CHAPTER 4. PROGRAMMABLE GPU ABSTRACTIONS 41

fetches. The first fetch uses the R channel of the triangle as the texture location for

the first vertex. The second and third fetches use the G and B channels.

Unfortunately, the abstraction is not as clean as it appears with our simple 1D

texture examples. Graphics processors currently have limited support for 1D textur-

ing. Many data structures will overflow the maximum size of a 1D texture. Instead,

we are forced to use 2D textures. Our general abstraction still works, it just requires

address conversion to and from 1D, much like a virtual to physical memory transla-

tion. Simply put, we do all the address calculations in 1D and only convert to 2D

when we need to do actual texture lookups. This conversion adds several instructions

to our lookups, but functionally works fine. We do need to watch out for precision

issues though. Current GPUs do not have integer data types, so we must be care-

ful to always floor address calculations. Additionally, the number of bits dedicated

to floating point mantissa varies from architecture to architecture. The number of

mantissa bits limits the size of our 1D virtual address space.

In summary, our simple abstraction of texture memory enables us to load a com-

plex data structure into memory and use fragment programs to navigate through it.

More importantly, it allows us to think about texture memory on the GPU as simple

read-only memory. This step is a key one to thinking about the GPU as a more gen-

eral purpose processor. Rather than worry about texture management and texture

coordinates, etc. we can think about memory and addresses.

4.3 Summary

We have shown how the programmable fragment engine for modern GPUs can be

thought of as a stream processor. This abstraction, coupled with the presented ab-

straction of texture memory, makes it easy to see that the GPU can perform many

general purpose computations not anticipated by their designers. Several other re-

searchers have used the abstractions described here in other projects [Bolz et al., 2003;

Goodnight et al., 2003]. The limited capabilities of current GPUs can make some as-

pects of streaming challenging to implement efficiently (such as conditional output

CHAPTER 4. PROGRAMMABLE GPU ABSTRACTIONS 42

streams). The abstraction allows us to think about writing complex streaming al-

gorithms instead of worrying about GPU-specific implementation details. As GPUs

evolve toward more general computation models, the limitations will disappear and

streaming algorithms will improve in efficiency. Labonte et al. [2004] present a de-

tailed evaluation of the strengths and weaknesses of current GPUs when used as

general purpose stream processors.

Finally, there is work being done to develop a language that makes general purpose

stream programming on the GPU much easier. Of particular note is the BrookGPU

programming language [Buck et al., 2004]. BrookGPU hides all details of the under-

lying graphics hardware from the programmer, and instead targets a general stream

programming model, much like that described in chapter 3. Non-graphics program-

mers can write BrookGPU programs and take advantage of the powerful compute

resources available in their GPUs.

Chapter 5

Ray Tracing on Programmable

Graphics Hardware

In this chapter, we present the synthesis of our stream formulation of ray tracing

with our stream processor abstraction of the GPU. The result is a ray tracing system

that runs completely on the GPU. The system has performance comparable to CPU-

based ray tracing systems. It also validates the stream programming model for the

GPU and the stream decomposition of ray tracing. This implementation also opens

up the possibility of real-time rendering that combines ray tracing with standard

feed-forward pipeline rendering.

We begin by describing the changes we made to allow the ray tracer described in

chapter 3 to run on the GPU. Next, we present simulation results of our ray tracer

running on two different architectures that resemble modern GPUs. The simulations

helped us evaluate the potential of a GPU-based ray tracer before any hardware was

available. We then present results from our implementation of a ray tracer on the ATI

Radeon 9700 Pro [ATI, 2002]. Finally, we discuss some of the short-term and long-

term improvements to the GPU that could make ray tracing and general computation

more efficient.

43

CHAPTER 5. RAY TRACING ON GPUS 44

5.1 Mapping Ray Tracing onto the GPU

As we saw in chapter 4, the programmable fragment processor found in modern GPUs

is effectively a stream processor. However, it is not quite as general as the stream

processor described in chapter 3, so we need to make a few modifications to our

stream formulation of ray tracing to implement ray tracing on the GPU. We need to

change some of our kernels, memory layout, and flow control mechanisms.

5.1.1 Kernels

In general, the functionality provided by fragment programs is nearly equivalent to

what the ray tracer was designed for. The two features lacking that we need to

compensate for are the lack of integer operations and lack of conditional output

streams.

Integer operations are especially important for memory addressing in our ray

tracer. All of our data structures (discussed below in section 5.1.2) use integer ad-

dresses. Our ray tracer must be able to access specific triangles and voxels. Since the

arithmetic units are floating point, we have to simulate integer operations with float-

ing point operations when we need integer data types. Fortunately, integer operations

are relatively easy to simulate. We can compute most integer operations by taking

the floor of the result of a floating point operation. Integer modulus operations,

however, require a few more operations including frac which returns the fractional

part of a floating point number:

A mod B = floor(frac(A / B) * B);

The larger problem is the lack of conditional output streams. We saw in chapter 4

that we could simulate conditional streams by adding extra state to the output of the

fragment program. Our ray tracer uses a state value that indicates whether a ray is

traversing, intersecting, or shading. In general, adding the extra state output did not

add significant cost to our kernels, but instead added more complexity to the flow

control of the system.

CHAPTER 5. RAY TRACING ON GPUS 45

27 69 ... 7860 4 17

1 3 45 ...0 3 21

... xyzxyz xyz xyz xyz

vox1 vox2 vox3 vox4 vox5 voxmvox0

vox0 vox1

... xyzxyz xyz xyz xyz

... xyzxyz xyz xyz xyz

tri1 tri2 tri3tri0 trin

v2

v1

v0

Grid
Texture

Triangle List
Texture

Triangle
Vertex

Textures

Figure 5.1: Texture memory layout for the streaming ray tracer. Each grid cell
contains a pointer to the start of the list of triangles for that grid cell, or a null
pointer if the cell is empty. The triangle lists are stored in another texture. Each
entry in the triangle list is a pointer to a set of vertex data for the indicated triangle.
Triangle vertices are stored in a set of three separate textures.

5.1.2 Memory Layout

We will use the abstraction for texture memory we developed in chapter 4 for navi-

gating our regular grid acceleration structure. The precise memory layout is shown

in figure 5.1. The uniform grid contains pointers to a delimited and compact list of

triangles for each grid cell. This list is simply a list of pointers to actual triangle data,

stored in yet another set of textures. For our implementation, we store each triangle

separately and do not share vertex data. Shading data such as vertex normals and

vertex colors are stored in a similar fashion to the vertex positions.

Texture memory is also used as the stream buffer that stores the data passed

between different kernels in the system. This double use of texture memory is one

major limitation of using the GPU for streaming computations. All the stream data

will pass through the texture cache, basically evicting any other data in the cache

and limiting the usefulness of the cache. Our simulations in section 5.2 quantify the

impact of this effect.

CHAPTER 5. RAY TRACING ON GPUS 46

5.1.3 Data Flow

Mapping the ray tracer to the GPU requires major changes to the ray tracer’s data

flow as compared to its ideal streaming implementation. In particular, we no longer

have the stream buffer to transfer rays between kernels. Instead, we rely on texture

memory and multipass rendering techniques to simulate stream buffer functionality.

This comes at a cost, but allows us to implement our streaming ray tracer on the

current generation of GPU. The cost is that we always have to read and write each

stream element since there is no conditional in or out on the GPU. Conditional stream

outputs would eliminate this need.

We simplify mapping our ray tracer by limiting the maximum depth to which

rays can bounce to a value set before rendering begins, usually three or four bounces.

This limit ensures we know the maximum size of the shade tree and can allocate

texture memory appropriately. In practice this is a reasonable simplification. The

contributions of rays to a final pixel color are small after just a few bounces.

Ray tracing performs a significant amount of looping over voxels and triangles

while locating the nearest hit point. We can use the optimization discussed in sec-

tion 4.1.2 to determine whether to enter into a traversal or intersection pass. The

basic idea is to switch between intersection and traversal passes until all the rays are

ready to shade. We then run a shading pass. Then, if we are doing reflections or

shadows, we go back to the traversal and intersection passes until they finish. This

sequence repeats for each level in the shade tree.

5.2 Architecture Simulations

We ran several high-level functional simulations of our streaming ray tracer before any

DirectX 9 class GPUs were available for testing an implementation. The simulations

gave us a rough idea of the performance we could expect from a GPU-based ray tracer.

More importantly however, we were able to quantify the effects of the architectural

differences between the idealized streaming ray tracer described in chapter 3 and the

GPU-based streaming ray tracer described in this chapter.

CHAPTER 5. RAY TRACING ON GPUS 47

We simulated two different architectures. We refer to one architecture as the

MIMD architecture. The MIMD architecture allows data dependent looping within a

kernel. This architecture executes the entire ray tracing computation within a single

fragment program. This architecture can execute an arbitrary number of instructions

in a single kernel invocation.

The other architecture we refer to as the SIMD architecture. For this architecture,

kernels are not allowed data dependent looping. Instead, looping is controlled outside

the kernel. The SIMD architecture is intended to closely resemble current GPUs.

Our simulations also assume this architecture is capable of an operation similar to

the early-z occlusion culling optimization discussed earlier. Before every kernel invo-

cation, it performs a check on a small 8-bit buffer containing ray state information. If

the state does not match the kernel that is being executed, that stream element is not

processed, preventing computation and bandwidth waste. Our simulations account

for the cost of both reading and writing this ray state information.

We did not simulate an on-chip stream buffer with either architecture. We knew

ahead of time that the upcoming graphics hardware would require us to use the

texture memory for stream data. Studies of on-chip stream buffers would be an

interesting extension to the work presented in this dissertation.

5.2.1 Simulation Methodology

The SIMD and MIMD architecture simulators were written in C++. Each simulation

run generates an image and tabulates several statistics. Example statistics include

the average number of traversal steps taken per ray, or the average number of ray-

triangle intersection tests performed per ray. The SIMD architecture simulator also

tracks the number and type of rendering passes performed, as well as state-buffer

activity. These statistics allow us to compute the cost for rendering a scene by using

the cost model described later in this section.

To evaluate the computation and bandwidth requirements of our streaming ray

tracer, we implemented each kernel as an assembly language fragment program. The

assembly language implementation provides estimates for the number of instructions

CHAPTER 5. RAY TRACING ON GPUS 48

SIMD MIMD
Kernel Instr. Mem. Words State Instr. Mem. Words

Count R W M RS WS Count R W M
Generate Eye Ray 28 0 5 0 0 1 26 0 4 0
Traverse

Setup 38 11 12 0 1 0 22 7 0 0
Step 20 14 9 1 1 1 12 0 0 1

Intersect 41 14 5 10 1 1 36 0 0 10
Shade

Color 36 10 3 21 1 0 25 0 3 21
Shadow 16 11 8 0 1 1 10 0 0 0
Reflected 26 11 9 9 1 1 12 0 0 0
Path 17 14 9 9 1 1 11 3 0 0

Table 5.1: Ray tracing kernel summary. We show the number of instructions required
to implement each of our kernels, along with the number of 32-bit words of memory
that must be read and written between rendering passes (R, W) and the number
of memory words read from random-access textures (M). Two sets of statistics are
shown, one for the SIMD architecture and another for the MIMD architecture. For
the MIMD architecture, we also show the number of 8-bit state-buffer reads (RS)
and writes (WS) for each kernel. State-buffer read overhead is charged for all rays,
whether the kernel is executed or not.

required for each kernel invocation. We also calculate the bandwidth required by

each kernel; we break down the bandwidth as stream input bandwidth, stream output

bandwidth, and memory (random-access read) bandwidth.

Table 5.1 summarizes the computation and bandwidth required for each kernel in

the ray tracer, for both the SIMD and the MIMD architectures. For the traversal and

intersection kernels that involve looping, the counts for the setup and the loop body

are shown separately. The MIMD architecture allows us to combine individual kernels;

as a result the kernels are slightly smaller since some initialization and termination

instructions are removed.

Using table 5.1, we can compute the total compute and bandwidth costs for the

scene using a cost model:

C = R ∗ (Cr + vCv + tCt + sCs) + R ∗ P ∗ Cstate

CHAPTER 5. RAY TRACING ON GPUS 49

Soda Hall Soda Hall Forest Forest
Outside Inside Top Down Inside

v 14.41 26.11 81.29 130.7
t 2.52 40.46 34.07 47.90
s 0.44 1.00 0.96 0.97
P 2443 1198 1999 2835

Figure 5.2: Statistics for our test scenes. Recall that v is the average number of voxels
pierced by a ray; t is the average number of triangles intersected by a ray; s is the
average number of shading calculations per ray; and P is the total number of SIMD
passes required to render the scene. Soda hall has 1.5M triangles and the forest has
1.0M triangles. We also used the Stanford bunny shown in figure 3.3. The Stanford
bunny has 70K triangles, with v = 93.93, t = 13.88, s = 0.82, and P = 1085. Scene
statistics were computed from 1024 × 1024 pixel renderings.

Here R is the total number of rays traced. Cr is the cost to generate a ray; Cv

is the cost to walk a ray through a voxel; Ct is the cost of performing a ray-triangle

intersection; and Cs is the cost of shading. P is the total number of kernel invocations,

and Cstate is the cost of reading the state-buffer. The total cost associated with each

stage is determined by the number of times that kernel is invoked. This number

depends on scene statistics: v is the average number of voxels pierced by a ray; t is

the average number of triangles intersected by a ray; and s is the average number of

shading calculations per ray. The MIMD architecture has no state-buffer checks, so

Cstate is zero for that architecture. The SIMD architecture must pay the state read

cost for all rays over all kernel invocations.

We used several large models as test scenes for our simulations, shown in figure 5.2,

along with the Stanford bunny scene from chapter 3.

• Soda Hall is a relatively complex model that has been used to evaluate other

real-time ray tracing systems [Wald et al., 2001]. It has walls made of large

CHAPTER 5. RAY TRACING ON GPUS 50

polygons and furnishings made from very small polygons. This scene has high

depth complexity.

• The forest scene includes trees with millions of tiny triangles. This scene has

moderate depth complexity, and it is difficult to perform occlusion culling. We

analyze the cache behavior of shadow and reflection rays using this scene.

• The Stanford bunny was chosen to demonstrate the extension of our ray tracer

to support shadows, reflections, and path tracing as shown in chapter 3.

Figure 5.2 also includes the statistics that are used in our cost model. Each scene

was rendered at 1024 × 1024 pixels with simple shading. No shadow, reflection, or

refraction rays were traced.

Choosing an optimal grid resolution for scenes is difficult. A finer grid yields

fewer ray-triangle intersection tests, but leads to more traversal steps. A coarser

grid reduces the number of traversal steps, but increases the number of ray-triangle

intersection tests. We attempt to keep voxels near cubical shape, and specify grid

resolution by the minimal grid dimension acceptable along any dimension of the

scene bounding box. For the bunny, our minimal grid dimension is 64, yielding a

final resolution of 98 × 64 × 163. For the larger Soda Hall and forest models, this

minimal dimension is 128, yielding grid resolutions of 250 × 198 × 128 and 581 × 128

× 581 respectively. These resolutions allow our algorithms to spend equal amounts

of time in the traversal and intersection kernels.

5.2.2 SIMD vs. MIMD Architecture

We evaluate the differences between our two proposed architectures in two areas:

resource consumption and the percentage of active rays during each rendering pass.

Computation and Bandwidth Consumption

When measuring resource consumption, we want to know how much bandwidth and

computation is required to render a frame. These numbers tell us whether our algo-

rithm is compute limited or bandwidth limited. A compute limited algorithm needs to

CHAPTER 5. RAY TRACING ON GPUS 51

Outside Inside
Soda Hall

Top Down Inside
Forest

Bunny
Ray Cast

0

1

2

3

4

5

G
In

st
ru

ct
io

ns

Intersector
Traverser
Other Kernels

0

5

10

15

20
G

B
ytes

SIMD Architecture

Figure 5.3: Compute and bandwidth usage for our scenes using the SIMD architec-
ture. Each column shows the contribution from each kernel. Left bar is compute,
right is bandwidth. The horizontal line represents the peak per-second bandwidth and
compute performance of a Radeon 9700 Pro. All scenes were rendered at 1024×1024
pixels.

perform more arithmetic operations per second than the architecture can deliver. A

bandwidth limited algorithm requires more data transfer per second than is available.

With current hardware trends, it is easier to provide more arithmetic capacity to an

architecture than it is to increase the bandwidth.

Using our cost model and measured scene statistics, we can calculate the estimated

the cost of rendering each scene in terms of bandwidth and computation. Figures 5.3

and 5.4 show the number of instructions and the bandwidth required to render a single

frame of each scene. The consumption is broken down by kernel type. The horizontal

line shows what a Radeon 9700 Pro is able to deliver per second as a reference point

(approximately 2.5G 4-way SIMD instructions/s in its fragment processor and roughly

12 GB/s of memory bandwidth).

These graphs show that traversal and intersection kernels dominate the cost of

rendering a scene, as is expected with our simple shading model. In addition, we

can see that the compute and bandwidth requirements of ray tracing on the SIMD

architecture match the design parameters of the Radeon 9700 Pro. That is, the

CHAPTER 5. RAY TRACING ON GPUS 52

Outside Inside
Soda Hall

Top Down Inside
Forest

Bunny
Ray Cast

0

1

2

3

4

5

G
In

st
ru

ct
io

ns

Intersector
Traverser
Other Kernels

0

5

10

15

20
G

B
ytes

MIMD Architecture

Figure 5.4: Compute and bandwidth usage for our scenes using the MIMD architec-
ture. Each column shows the contribution from each kernel. Left bar is compute,
right is bandwidth. The horizontal line represents the peak per-second bandwidth and
compute performance of a Radeon 9700 Pro. All scenes were rendered at 1024×1024
pixels.

compute to bandwidth ratio is approximately the same as the design parameters of

the Radeon 9700 Pro. Ray tracing on the MIMD architecture, however, is severely

compute limited. It requires a small fraction of the bandwidth that ray tracing on

the SIMD architecture requires.

Figure 5.5 shows the bandwidth measurements broken down by data type instead

of by kernel. The graph shows that, as expected, all of the bandwidth required by

the MIMD architecture is for reading voxel and triangle data structures from mem-

ory. The SIMD architecture, conversely, uses most of its bandwidth for writing and

reading intermediate values to and from texture memory between passes. Similarly,

saving and restoring these intermediates requires extra instructions. In addition, sig-

nificant bandwidth is devoted to reading the state-buffer. This extra computation

and bandwidth consumption is the fundamental limitation of the SIMD architecture.

CHAPTER 5. RAY TRACING ON GPUS 53

Outside Inside
Soda Hall

Top Down Inside
Forest

Bunny
Ray Cast

0

5

10

15

20

G
B

yt
es

Ray State
Stream Data
Data Structures

Figure 5.5: Bandwidth consumption by data type. Left bars are for the SIMD archi-
tecture, right bars for the MIMD architecture. Ray state is the bandwidth for reading
and writing the 8-bit state-buffer. Stream data are data written to and read from
texture memory between passes. Data structure bandwidth comes from read-only
data: triangles, triangle lists, grid cells, and shading data. All scenes were rendered
at 1024 × 1024 pixels.

Percentage of Active Rays per Rendering Pass

We also evaluate the average number of active rays per rendering pass for the SIMD

architecture. Recall that rays may be in one of four states: traversing, intersecting,

shading, or done. Between 6-10% of rays are active every pass in our test scenes,

except for the outside view of Soda Hall, as shown in table 5.2. This viewpoint

contains several rays that miss the scene bounding box entirely. As expected, the

number of active rays is much lower since rays that miss the scene completely never

become active during the rest of the computation. Although an average of 10% active

rays may seem low, the fragment processor utilization is much higher since we are

relying on early-z occlusion culling to discard inactive rays, freeing compute resources

and bandwidth for active rays.

Table 5.2 also shows the maximum number of traversal steps and intersection

tests that are performed per ray. Since the total number of passes depends on the

worst case ray, these numbers provide lower bounds on the number of passes needed.

CHAPTER 5. RAY TRACING ON GPUS 54

Per-Ray Maximum Total Avg. Percent
Scene Traversals Intersections SIMD Passes Active Rays
Soda Hall Outside 384 1123 2443 0.9%
Soda Hall Inside 60 1039 1198 6.1%
Forest Top Down 137 1435 1999 6.2%
Forest Inside 898 990 2835 6.8%
Bunny Ray Cast 221 328 1085 10.5%

Table 5.2: The total number of SIMD rendering passes (repeated here from figure 5.2)
for each scene is bounded from below by the maximum number of traversal steps and
intersection tests per ray, shown in this table. The average percentage of rays that
are active during each rendering pass is shown in the last column.

Our SIMD algorithm interleaves traversal and intersection passes and comes within a

factor of two to three of the optimal number of rendering passes. The naive algorithm,

which performs an intersection as soon as any ray hits a full voxel, requires at least

a factor of five times more passes than optimal on these scenes.

One way to reduce both the number of rendering passes and the bandwidth con-

sumed by intermediate values in the SIMD architecture is to unroll the inner loops.

We have presented data for a single traversal step or a single intersection test per-

formed per ray in a rendering pass. If we instead unroll our kernels to perform

four traversal steps or two intersection tests, all of our test scenes reduce their total

bandwidth usage by 50%. If we assume we can suppress triangle and voxel memory

references if a ray finishes in the middle of the pass, the total bandwidth reduction

reaches 60%. At the same time, the total instruction count required to render each

scene increases by less than 10%. With more aggressive loop unrolling the bandwidth

savings continue, but the total instruction count increase varies by a factor of two or

more between our scenes. These results indicate that loop unrolling can make up for

some of the overhead inherent in the SIMD architecture, but unrolling still does not

achieve the compute to bandwidth ratio obtained by the MIMD architecture.

CHAPTER 5. RAY TRACING ON GPUS 55

Outside Inside
Soda Hall

Top Down Inside
Forest

Bunny
Ray Cast

Shadow Reflect
Forest

0.0

0.5

1.0

1.5

2.0

N
or

m
al

iz
ed

 B
an

dw
id

th

Ray State
Stream Data
Voxel Data
Triangle Data
Shading Data

Figure 5.6: Ratio of bandwidth with a texture cache to bandwidth without a texture
cache. Left bars are for the SIMD architecture, right bars for the MIMD architecture.
Within each bar, the bandwidth consumed is broken down by data type. All scenes
were rendered at 1024 × 1024 pixels.

5.2.3 Stream Buffer vs. Cache

Both the SIMD and the MIMD architecture simulators generate a trace file of the

memory reference stream for processing by our texture cache simulator. In our cache

simulations we used a 64 kB direct-mapped texture cache with a 48-byte line size.

This line size holds four floating point RGB texels, or three floating point RGBA

texels with no wasted space. The execution order of fragment programs affects the

caching behavior. We execute kernels as though there were a single pixel wide graph-

ics pipeline. It is likely that a GPU implementation will include multiple parallel

fragment pipelines executing concurrently, and thus their accesses will be interleaved.

Our architectures are not specified at that level of detail, and we are therefore not

able to take such effects into account in our cache simulator.

Look again at figure 5.5. Notice that nearly all the bandwidth is consumed by

stream buffer data. Figure 5.6 shows the bandwidth requirements when a texture

cache is used. The bandwidth consumption is normalized by dividing by the non-

caching bandwidth reported earlier. Inspecting this graph we see that the SIMD

CHAPTER 5. RAY TRACING ON GPUS 56

architecture does not benefit very much from texture caching. Most of the band-

width is being used for streaming data, in particular, for either the state-buffer or for

intermediate results. Since this data is unique to each kernel invocation, there is no

reuse. In contrast, the MIMD architecture utilizes the texture cache effectively. Since

most of its bandwidth is devoted to reading shared data structures, there is reuse. If

we examine the caching behavior of triangle data only, we see that a 96-99% hit rate

is achieved by both the SIMD and the MIMD architectures. This high hit rate sug-

gests that triangle data caches well, and that we have a fairly small working set size.

These results indicate that if the SIMD architecture had a separate memory system

for stream data (i.e. a stream buffer) and global read-only data, it would achieve a

high overall cache utilization like the MIMD architecture.

Additionally, secondary rays do not cache as well as eye rays, due to their generally

incoherent nature. The last two columns of figure 5.6 illustrate the cache effectiveness

for secondary rays, measured separately from primary rays. For these tests, we render

the inside forest scene in two different styles. “Shadow” is rendered with three light

sources with each hit producing three shadow rays. “Reflect” applies a two bounce

reflection and single light source shading model to each primitive in the scene. For

the SIMD architecture, the texture cache is unable to reduce the total bandwidth

consumed by the system. Once again the streaming data destroys any locality present

in the triangle and voxel data. The MIMD architecture results demonstrate that

scenes with secondary rays can benefit from caching. The system achieves a 35%

bandwidth reduction for the shadow computation. However, caching for the reflective

forest does not reduce the required bandwidth. Improving the coherence of reflected

rays in our system is left as future work.

5.2.4 Summary

We have simulated two hypothetical GPUs: one based on SIMD fragment processing,

the other based on MIMD fragment processing. The simulations of the ray caster

on the SIMD architecture show a very good balance between computation and band-

width. The ratio of instruction count to bandwidth matches the capabilities of a the

CHAPTER 5. RAY TRACING ON GPUS 57

Radeon 9700 Pro. Expanding the traversal and intersection kernels to perform mul-

tiple traversal steps or intersection tests per pass reduces the bandwidth required for

the scene at the cost of increasing the computational requirements. The amount of

loop unrolling can be changed to match the computation and bandwidth capabilities

of the underlying hardware. In comparison, the MIMD architecture consumes fewer

instructions and significantly less bandwidth. As a result, the MIMD architecture

is severely compute-limited based on today’s GPU bandwidth and compute rates.

The MIMD architecture will become more attractive in the future as the compute to

bandwidth ratio on graphics chips increases with the introduction of more parallel

fragment pipelines.

5.3 Implementation Results

We implemented our ray tracer on an ATI Radeon 9700 Pro graphics card. The

Radeon 9700 Pro was the first DirectX 9 class GPU available. We have measured the

peak performance of the fragment processor to be approximately 2.5G instructions/s

and 12 GB/s of total memory bandwidth with Catalyst 3.10 drivers. Our ray tracing

results were measured on a dual Pentium III 800 MHz machine with 1 GB RAM.

The operating system was Microsoft Windows XP with Catalyst 2.3 drivers. The ray

tracer was written using ATI FRAGMENT PROGRAM (which has been since deprecated

in favor of ARB FRAGMENT PROGRAM [ARB, 2003b]).

Our ray tracing code requires a custom OpenGL driver that allows us to take

some shortcuts when coding the OpenGL code surrounding our fragment programs.

Specifically, we are allowed to read from a texture that is bound as an output target.

This capability allows us to avoid double buffering our data, conserving texture mem-

ory space. This is normally a dangerous optimization since a fragment program could

lookup a texture value that has changed (a read after write hazard). Fortunately, the

textures we modify in this way are used as streambuffer data — stream data that gets

modified by a kernel is only ever read within that same kernel, avoiding read after

write hazards. We are also allowed to have more than four renderable buffers within

CHAPTER 5. RAY TRACING ON GPUS 58

Instr. Texture
Kernel Count R W
Generate Eye Ray 27 0 3
Traverse

Setup 32 2 4
Step 43 7 4

Intersect 59 9 2
Shade

Color 48 9 4
Shadow 48 9 1
Reflected 46 8 4

Table 5.3: Ray tracing kernel breakdown for our Radeon 9700 Pro implementation.
R is the number of 32-bit RGBA textures read, and W is the number of 32-bit RGBA
output channels written per rendering pass.

the same rendering context. This means we don’t ever have to switch rendering con-

texts, which Bolz et al. [2003] showed can be quite expensive. We can specify which

four of our several buffers are to be mapped as output targets within the OpenGL

code. We have not yet migrated our code to ARB FRAGMENT PROGRAM, and hence

can not take advantage of any performance tuning available in newer drivers.

Our ray tracing kernels changed slightly from those used in simulation when we

wrote them for the GPU. Table 5.3 shows the new cost of each kernel. We list the

number of instructions, the number of textures read in, and the number of output

channels used for each kernel. We were required to make all of our textures the

same type, namely RGBA floating point textures (4 channels of 32-bit data each).

This is partially due to the special OpenGL driver we used, and partially due to

the constraints that the Radeon 9700 Pro has for writing to multiple render targets

(textures) at the same time. The Radeon 9700 Pro supports writing to up to four

textures at once per rendering pass. However, this comes at a price as all the data

written must be the same data type, meaning four-component floating point for our

application. This increases our bandwidth consumption considerably as compared to

our simulations.

CHAPTER 5. RAY TRACING ON GPUS 59

Cornell Box Teapotahedron Quake3

Triangles 32 840 35468
Voxels 64 9408 92220

Figure 5.7: Test scenes for the Radeon 9700 Pro ray tracer. Our ray tracer has
been run with three scenes: the Cornell Box scene, the Teapotahedron scene,
and the Quake3 scene. These images were generated on the GPU using standard
feed-forward rendering with diffuse shading. We show the triangle count for each
scene along with the number of voxels in the acceleration structure we used for our
experiments.

Another difference between our implementation and our simulations is that our

GPU implementation utilizes the early-z occlusion culling mentioned in chapter 4.

This means that for a given rendering pass, we do not actually know how many rays

are actually being processed. This means we can not calculate the bandwidth and

computation consumption for our rendered scenes. In addition, the OpenGL driver

optimizes fragment programs, making any calculations rough upper bounds at best.

Instead we provide a count of the number of traversal and intersection passes required

to render each scene — numbers independent of the particular GPU and driver used.

We rendered several test scenes. Figure 5.7 shows each of these scenes rendered

with standard OpenGL, along with the number of triangles and the grid resolution

used to render each scene. Each scene was chosen to stress a different part of our ray

tracing algorithm.

• The Cornell Box scene was used as our debugging scene and we also used

it run a simple soft shadow algorithm. The soft shadows were generated by

storing random numbers in a texture and using that texture when determining

CHAPTER 5. RAY TRACING ON GPUS 60

Cornell Box Teapotahedron Quake3

Rays S E, S, R E, R S
Frame Rate 10.5 fps 1.0 fps 1.5 fps 1.8 fps
Traversals 18 123 79 146
Intersections 54 2350 1499 730

Table 5.4: Timings and pass breakdown of scenes rendered on the Radeon 9700 Pro
at 256 × 256 pixels. Each scene traces eye rays (E), shadow rays (S), reflection rays
(R), or a combination of rays depending on the shading model used. We show the
frame rates and the number of traversal and intersection passes required to render
the scenes from the viewpoint shown in figure 5.7.

shadow ray hit points on the light. This scene was also used to test out a hybrid

rendering algorithm where the initial viewing ray hit positions were computed

with an OpenGL feed-forward pass. Shadows were then added through a set of

ray tracing passes.

• The Teapotahedron scene was used to test a pure Whitted ray tracer. The

scene is a simplified version of the scene found on the cover of An Introduction

to Ray Tracing [Glassner, 1989]. For this scene, we cast eye rays, shadow rays,

and reflection rays. The system is configured to allow us to turn off any or all

of the secondary rays.

• The Quake3 scene stress tested our ray tracer with large geometric complexity.

We also wanted to render a real game scene to test the performance in a real

application. It was rendered with our shadow caster using the hybrid rendering

scheme used for the Cornell Box scene.

A summary of performance results for each scene is found in table 5.4. Each

scene is rendered at 256 × 256 pixels. We rendered each scene from a variety of

viewpoints and with a variety of different shading techniques. The reported frame

rates are the range of observed rates for the stated shading method as we moved the

camera through the model. The table gives the type of rays traced into the scene,

and provides counts for the number of times the traversal and intersection kernels

CHAPTER 5. RAY TRACING ON GPUS 61

were called. The shade and traversal setup kernels are called once for each type of

ray.

We measured both the peak ray-triangle intersection rate and the number of rays

cast per second we were able to achieve on the GPU. We achieve a peak rate of

100M ray-triangle intersection tests per second. The Ray Engine [Carr et al., 2002],

a GPU-based ray-triangle intersection engine that runs on the Radeon 8500 [ATI,

2001], achieved a peak rate of 114M ray-triangle intersection tests per second. These

numbers compare favorably to the peak rate of 20M intersections per second achieved

on an 800 MHz Pentium III [Wald et al., 2001]. More recent results show a peak rate

of around 120M intersections per second on a 3.0 GHz Pentium 4 [Wald, 2004].

The peak ray-triangle intersection rate shows that the GPU is very good at large,

compute intensive calculations. A better measure for a ray tracing system is the

actual number of rays that can be processed per second. This number includes all

the steps from creating a ray to computing a color for it. We have observed a range

between 300K and 4M rays/s for our test scenes with our system. This again compares

favorably to rates between 800K and 7.1M rays/s on a 2.5 GHz Pentium 4 [Wald

et al., 2003] that do not include shading. When simple shading is included, the

Pentium 4 performance drops to between 1.8M and 2.3M rays/s. These numbers

indicate that the streaming formulation for ray tracing can produce high performance

code — especially considering the GPU is lacking several features that could boost

performance even further.

Figures 5.8, 5.9, and 5.10 show some screen captures of our system running with

our test scenes. Figure 5.8 shows the Cornell Box scene rendered with our hybrid

shadow caster. Figure 5.9 shows the Teapotahedron scene rendered with our full

Whitted ray tracer. Finally, figure 5.10 shows the Quake3 scene, again rendered

with our hybrid shadow caster.

5.4 Discussion

In this section, we discuss some near term and longer term improvements to the GPU

that would improve the performance of our ray tracer.

CHAPTER 5. RAY TRACING ON GPUS 62

Figure 5.8: Cornell Box test scene with ray traced soft shadows on the GPU. This
scene was rendered with a shadow caster, with the initial visible hit point found using
the feed-forward pipeline. The shadows were added by a set of ray tracing passes.

Figure 5.9: Teapotahedron scene ray traced with shadows and reflections on the
GPU. The right images are rendered with reflections only. This was rendered using
a set of rendering passes that implement Whitted-style ray tracing.

5.4.1 Short-Term GPU Improvements

One of the most important improvements that can be made to the Radeon 9700 Pro

is to the internal floating point precision. The Radeon 9700 Pro uses a s16e7 24-bit

internal format. This format usually works well, except when trying to use the floating

point registers to perform integer addressing calculations. The 16-bit mantissa allows

for only 131,072 unique integer values. That means we can only address a 256x512

texture through the integer calculations. This caps our scene complexity at 131K

triangles and 131K voxels. Clearly, before complex scenes can be ray traced with

CHAPTER 5. RAY TRACING ON GPUS 63

Figure 5.10: Quake3 rendered with standard feed-forward pipeline shading and shad-
ows added through rendering passes implementing a shadow caster.

this hardware, the mantissa size needs to be increased. A hierarchical acceleration

structure might allow for better use of the voxel address space, but we start to hit

dependent texture limits in this case.

One potential fix would be to include true integer operations and data types.

Integer data types would allow full 24-bit addressing — more than enough to ad-

dress most scenes. In addition, integer operations such as integer divide and modulo

arithmetic would save several operations prior to memory fetches. Inclusion of a full

integer ALU in the pipeline would also allow bit operations. These operations could

make the uniform grid much more memory efficient.

Finally, the special capabilities in the OpenGL implementation we used are just

starting to make their way into public APIs. The Superbuffers extension [Doggett,

2003] allows a programmer to create several light-weight buffers that can be rendered

into by a fragment program. These are an alternative to full off-screen frame buffers

(p-buffers) when a full rendering context is not needed. Our driver allowed us to have

CHAPTER 5. RAY TRACING ON GPUS 64

several auxiliary buffers within a single p-buffer context to prevent expensive context

switch overhead.

5.4.2 Long-Term GPU Design Changes

There are two ways that GPUs could evolve that would enable ray tracing to be

much more efficient. The first is to add efficient MIMD processing to the fragment

pipeline. We saw in section 5.2.2 that MIMD cores make much better use of their

resources than SIMD cores for ray tracing. This difference is due to the large amounts

of looping and branching in the ray tracing computation.

The second way to make ray tracing much more efficient on a GPU would be

to add a stream buffer. Without a stream buffer, a program that requires multiple

kernels suffers from inefficient use of both bandwidth and computation resources.

Bandwidth gets wasted when data that should live in the stream buffer is passed

through the texture cache. The stream data effectively flushes the cache, evicting

other potentially useful data.

Additionally, without a stream buffer, the GPU has to rely on early-z occlusion

culling to prevent fragments from being processed when they are in the wrong state.

This culling currently happens at a granularity larger than a single pixel (in fact, it

appears to happen in 4x4 pixel blocks and larger). This means several pixels that

have not changed value during the rendering pass read their inputs and write their

outputs. This is a waste of both computation and bandwidth resources.

A stream buffer with conditional outputs would not only allow computation and

bandwidth to be used more effectively, but would ease programmer burden. For the

ray tracer, rays that required more traversal or intersection would be fed into the right

streams automatically. The programmer would not have to worry about masking out

rays in the wrong state for a kernel execution.

CHAPTER 5. RAY TRACING ON GPUS 65

5.5 Conclusions

Through simulation and implementation, we have demonstrated how to map a ray

tracer onto a streaming processor. We have shown that programmable GPUs are

starting to support a general streaming model of computation. Algorithms such as

ray tracing that can benefit from the stream programming model can leverage these

processors. The result is high performance code competitive with the best known

CPU implementations. Simple changes to GPU architectures would make algorithms

like ray tracing run even better.

Chapter 6

Photon Mapping on Programmable

Graphics Hardware

6.1 Introduction

Global illumination is essential for realistic image synthesis in general environments.

Effects such as shadows, caustics, and indirect illumination are important visual cues

that add to the perceived realism of a rendered scene. Photon mapping [Jensen, 1996]

is one of the more widely used algorithms, since it is very practical and capable of

computing a full global illumination solution efficiently. It is a two-pass technique

in which the first pass consists of tracing photons through the scene and recording

their interaction with the elements in the scene in a data structure, the photon map.

This photon map is used during the second pass, the rendering pass, to estimate

diffuse indirect illumination as well as caustics. The illumination at a given point is

estimated based on statistics, such as the density, of the nearest photons located in

the photon map.

Global illumination algorithms such as photon mapping have traditionally relied

on sophisticated software implementations and offline rendering. Using the GPU for

computing a global illumination solution has not previously been possible due to the

lack of floating point capability, as well as insufficient programmability. This has

changed with the most recent generation of programmable graphics hardware such

66

CHAPTER 6. PHOTON MAPPING ON GPUS 67

as the ATI Radeon 9800 Pro [ATI, 2003] and the NVIDIA GeForce FX 5900 Ul-

tra [NVIDIA, 2003a]. The programming model for these GPUs is still somewhat

limited, mainly due to the lack of random access writes. This prevents efficient

construction of most data structures and makes many common algorithms such as

sorting difficult to implement efficiently. Nonetheless, several researchers have har-

nessed the computational power of programmable GPUs to perform computations

previously run in software [Bolz et al., 2003; Carr et al., 2002; Harris et al., 2002;

Krüger and Westermann, 2003; Larsen and McAllister, 2001; Purcell et al., 2002].

Similarly, we are interested in using GPUs to simulate global illumination using pho-

ton mapping.

Previous research on graphics hardware has explored the idea of simulating global

illumination. Ma et al. [Ma and McCool, 2002] proposed a technique for approximate

nearest neighbor search in the photon map on a GPU using a block hashing scheme.

Their scheme is optimized to reduce bandwidth on the hardware, but it requires

processing by the CPU to build the data structure. Carr et al. [Carr et al., 2002]

and Purcell et al. [Purcell et al., 2002] used the GPU to speed up ray tracing, as

described in chapter 5. They also simulated global illumination using path tracing.

Unfortunately, path tracing takes a significant number of sample rays to converge and

even with the use of GPUs it remains a very slow algorithm.

Recently, Wald et al. [Wald et al., 2002] demonstrated that photon mapping com-

bined with instant radiosity could be used to simulate global illumination at interac-

tive rates on a Linux cluster. They achieve interactive speeds by biasing the algorithm

and by introducing a number of limitations such as a highly optimized photon map

data structure, a hashed grid. By choosing a fixed search radius a priori, they set the

grid resolution so that all neighbor queries simply need to examine the 8 nearest grid

cells. However, this sacrifices one of the major advantages of the k-nearest neighbor

search technique, the ability to adapt to varying photon density across the scene.

By adapting the search radius to the local photon density, Jensen’s photon map can

maintain a user-controllable trade off between noise (caused by too small a radius

yielding an insufficient number of photons) and blur (caused by too large a search

radius) in the reconstructed estimate.

CHAPTER 6. PHOTON MAPPING ON GPUS 68

We present a modified photon mapping algorithm that runs entirely on the GPU.

We have changed the data structure for the photon map to a uniform grid, which can

be constructed directly on the hardware. In addition, we have implemented a variant

of Elias’s algorithm [Cleary, 1979] to search the grid for the k-nearest neighbors of a

sample point (kNN-grid). This is done by incrementally expanding the search radius

and examining sets of grid cells concentrically about the query point. For rendering,

we have implemented a stochastic ray tracer, based on a fragment program ray tracer

like that introduced in chapter 5. We use recursive ray tracing for specular reflection

and refraction [Whitted, 1980] and distributed tracing of shadow rays to resolve soft

shadows from area lights [Cook et al., 1984]. Finally, our ray tracer uses the kNN-grid

photon map to compute effects such as indirect illumination and caustics.

Our implementation demonstrates that current graphics hardware is capable of

fully simulating global illumination with progressive and even interactive feedback to

the user. To compute various aspects of the global illumination solution, we introduce

a number of GPU based algorithms for sorting, routing, and searching.

6.2 Photon Mapping on the GPU

The following sections present our implementation of photon mapping on the GPU.

Section 6.2.1 briefly describes the tracing of photons into the scene. Section 6.2.2

describes two different techniques for building the photon map data structures on the

GPU. Section 6.2.3 describes how we compute a radiance estimate from these struc-

tures using an incremental k-nearest neighbor search. Finally, section 6.2.4 briefly

describes how we render the final image. A flow diagram for our system is found in

figure 6.1.

Most of our algorithms use the programmable fragment engine as a stream pro-

cessor. For every processing pass, we draw screen sized quad into a floating point

p-buffer, effectively running an identical fragment program at every pixel in the 2D

buffer. This setup is common among several systems treating the GPU as a computa-

tion engine [Bolz et al., 2003; Carr et al., 2002; Purcell et al., 2002]. When computing

the radiance estimate, however, we tile the screen with large points, enabling us to

CHAPTER 6. PHOTON MAPPING ON GPUS 69

Trace
Photons

Build
Photon

Map

Render Image

Ray
Trace
Scene

Compute
Radiance
Estimate

Compute Lighting

Figure 6.1: Photon mapping system flow. Photon tracing and photon map con-
struction only occur when geometry or lighting changes. Ray tracing and radiance
estimates occur at every frame.

terminate certain tiles sooner than other tiles. The benefits of tiling are examined

further in section 6.3.

6.2.1 Photon Tracing

Before a photon map can be built, photons must be emitted into the scene. The

process of tracing eye rays and tracing photons from a light source is very similar.

The most important difference is that at each surface interaction, a photon is stored

and another is emitted. Much like tracing reflection rays, this takes several rendering

passes to propagate the photons through several bounces. Each bounce of photons

is rendered into a non-overlapping portion, or frame, of a photon texture, while the

results of the previous pass are accessed by reading from the previous frame. The

initial frame is simply the positions of the photons on the light source, and their

initial random directions. The direction for each photon bounce is computed from a

texture of random numbers.

Not all photons generated are valid; some may bounce into space. Current GPUs

do not allow us to selectively terminate processing on a given fragment. Instead,

GPUs provide a KILL instruction that prevents a fragment value from being written

to the framebuffer. Since we are rendering to a separate frame of the photon texture

for each bounce, KILL does not save any texture space. Instead, we explicitly mark

photons as valid or invalid.

CHAPTER 6. PHOTON MAPPING ON GPUS 70

6.2.2 Constructing the Photon Map Data Structure

The original photon map algorithm uses a balanced k-d tree [Bentley, 1975] to store

photons. While this structure makes it possible to quickly locate the nearest photons

at any point, it requires random access writes to construct efficiently. Instead, we

use a uniform grid for storing the photons. In this section we present two different

techniques for building a uniform grid photon map. The first method sorts photons

by grid cell using bitonic merge sort. This step creates an array of photon indices

where all photons in a grid cell are listed consecutively. Binary search is then used to

build an array of indices to the first photon in each cell (see figure 6.4 for an example

of the resulting data structure). To reduce the large number of passes this algorithm

requires, we propose a second method for constructing an approximate photon map

using the stencil buffer. In this method, we limit the maximum number of photons

stored per grid cell, making it possible to route the photons to their destination grid

cells with a single pass using a vertex program and the stencil buffer.

Fragment Program Method — Bitonic Merge Sort

One way to index the photons by grid cell is to sort them by cell and then find the

index of the first photon in each cell using binary search.

Many common sorting algorithms require the ability to write to arbitrary loca-

tions, making them unsuitable for implementation on current GPUs. We can, how-

ever, use a deterministic sorting algorithm for which output routing from one step

to another is known in advance. Bitonic merge sort [Batcher, 1968] has been used

for sorting on the Imagine stream processor [Kapasi et al., 2000], and meets this

constrained output routing requirement of the GPU.

Bitonic merge sort is a parallel sorting algorithm that allows an array of n pro-

cessors to sort n elements in O(log2
n) steps. Each step performs n comparisons and

swaps. The algorithm can be directly implemented as a fragment program, with each

stage of the sort performed as one rendering pass over an n pixel buffer. Bitonic sort

is illustrated graphically in figure 6.2 and the Cg [Mark et al., 2003] code we used

CHAPTER 6. PHOTON MAPPING ON GPUS 71

ù
ú

û

ü

ý

þ

ÿ

�

ÿ
þ

ù

û

�

ý

ú

ü

ý
þ

û

�

ù

ú

ÿ

ü

ú
þ

û

�

ù

ý

ü

ÿ

ú
ý

û

ÿ

ù

þ

ü

�

ÿ
ý

û

ú

�

þ

ü

ù

ÿ
ý

ú

û

�

þ

ù

ü

Figure 6.2: Stages in a bitonic sort of eight elements. The unsorted input sequence is
shown in the left column. For each rendering pass, element comparisons are indicated
by the arrows. Elements at the head and tail of the arrow are compared. The smaller
element is placed at the tail of the arrow and the larger element is placed at the head
of the arrow. The final sorted sequence is achieved in O(log2

n) passes.

to implement it is found in figure 6.3. The result of the sort is a texture of photon

indices, ordered by grid cell.

Once the photons are sorted, binary search can be used to locate the contiguous

block of photons occupying a given grid cell. We compute an array of the indices

of the first photon in every cell. If no photon is found for a cell, the first photon in

the next grid cell is located. The simple fragment program implementation of binary

search requires O(log n) photon lookups for each cell. Because there is no need to

output intermediate results, all of the photon lookups can be unrolled into a single

rendering pass. An example of the final set of textures used for a grid-based photon

map is found in figure 6.4.

Sorting and indexing is an effective way to build a compact, grid-based photon

map. Unfortunately, the sorting step can be quite expensive. Sorting just over a

million photons (1024×1024) would require 210 rendering passes, each applied to the

full 1024× 1024 buffer. Each compare and swap operation requires two texture reads

and one texture write, which makes sorting very bandwidth intensive as well.

CHAPTER 6. PHOTON MAPPING ON GPUS 72

fragout float BitonicSort(vf30 In, uniform samplerRECT sortedplist,

uniform float offset, uniform float pbufinfo,

uniform float stage, uniform float stepno)

{
fragout float dst;

float2 elem2d = floor(In.WPOS.xy);

float elem1d = elem2d.y*pbufinfo.x + elem2d.x;

half csign = (fmod(elem1d, stage) < offset) ? 1 : -1;

half cdir = (fmod(floor(elem1d/stepno), 2) == 0) ? 1 : -1;

float4 val0 = f4texRECT(sortedplist, elem2d);

float adr1d = csign*offset + elem1d;

float2 adr2d = convert1dto2d(adr1d, pbufinfo.x);

float4 val1 = f4texRECT(sortedplist, adr2d);

float4 cmin = (val0.y < val1.y) ? val0 : val1;

float4 cmax = (val0.y > val1.y) ? val0 : val1;

dst.col = (csign == cdir) ? cmin : cmax;

return dst;

}

Figure 6.3: Cg code for the bitonic merge sort fragment program. The function
convert1dto2d maps 1D array addresses into 2D texture addresses.

Vertex Program Method - Stencil Routing

The limiting factors of bitonic merge sort are the O(log2
n) rendering passes and

the O(n log2
n) bandwidth required to sort the emitted photons. To support global

illumination at interactive rates, we would prefer to avoid introducing the latency of

several hundred rendering passes when generating the photon map. We would also

prefer an algorithm that is less bandwidth hungry. To address these problems, we

have developed an alternate algorithm for constructing a grid-based photon map that

runs in a single pass and only requires O(n) bandwidth.

We note that vertex programs provide a mechanism for drawing a glPoint to an

arbitrary location in a buffer. The ability to write to a computed destination address

is known as a scatter operation. If the exact destination address for every photon

could be known in advance, then we could route them all into the buffer in a single

pass by drawing each photon as a point. Essentially, drawing points allows us to solve

a one-to-one routing problem in a single rendering pass.

CHAPTER 6. PHOTON MAPPING ON GPUS 73

� � � � � � � � � � ����
	 �����������	 �

��������������	 � � ! " # $ % � � � � �

�����������&�'�
��	 ��	 ���

�(�����)�����*��+-,��

������������.�	 ��,
/0��	 ���

1 121

12121

12121

12121

12121

Figure 6.4: Resultant textures for a grid-based photon map generated by bitonic
sort. The uniform grid texture contains the index of the first photon in that grid cell.
The photon list texture contains the list of photon indices, sorted by grid cell. Each
photon in the photon list points to its position, power, and incoming direction in the
set of photon data textures.

Our task of organizing photons into grid cells is a many-to-one routing problem,

as there may be multiple photons to store in each cell. However, if we limit the

maximum number of photons that will be stored per cell, we can preallocate the

storage for each cell. By knowing this “texture footprint” of each cell in advance, we

reduce the problem to a variant of one-to-one routing.

The idea is to draw each photon as a large glPoint over the entire footprint of its

destination cell, and use the stencil buffer to route photons to a unique destination

within that footprint. Specifically, each grid cell covers an m×m square set of pixels so

each grid cell can contain at most m×m photons. We draw photons with glPointSize

set to m which when transformed by the vertex program will cause the photon to

cover every possible photon location in the grid cell. We set the stencil buffer to

control the location each photon updates within each grid cell by allowing at most

one fragment of the m × m fragments to pass for each drawn photon. The stencil

buffer is initialized such that each grid cell region contains the increasing pattern

from 0 to m
2 − 1. The stencil test is set to write on equal to m

2 − 1, and to always

increment. Each time a photon is drawn, only one fragment passes through, but the

entire m × m region of the stencil buffer increments. This causes the next photon

CHAPTER 6. PHOTON MAPPING ON GPUS 74

Vertex
Program

Vertex
Program Stencil

Vertex
Program Stencil

p0 p0

p0 p0

p0

p0p1

3 4
21

2 3
10

2 3
10

2 3
10

4 5
32

2 3
10

2 3
10

2 3
10

(a)

p0

p0

p1

(b)

(c)

Figure 6.5: Building the photon map with stencil routing. For this example, grid cells
can hold up to four photons, and photons are rendered as 2 × 2 points. Photons are
transformed by a vertex program to the proper grid cell. In (a), a photon is rendered
to a grid cell, but because there is no stencil masking the fragment write, it is stored
in all entries in the grid cell. In (b) and (c) the technique we use is illustrated: the
stencil buffer controls the destination written to by each photon.

drawn to a new location in the grid cell. This allows efficient routing of up to the

first m
2 photons to each grid cell. This process is illustrated in figure 6.5.

We generally use a 1024 × 1024 stencil buffer with m set to 16, leaving 65,536

available grid cells (enough for a 403 grid). In regions of high photon density, many

more photons than can be stored will map to a single grid cell. To reduce the artifacts

of this method, we redistribute the power of the surplus photons across those that

are stored. Note that the stencil buffer maintains a count of how many photons were

destined for each grid cell, and we assume that all our stored photons have roughly the

same power. Hence, we can scale the power of the stored photons by the ratio between

the number of photons destined for a cell and the number actually stored. This

redistribution of power is an approximation, but the potential performance benefits

CHAPTER 6. PHOTON MAPPING ON GPUS 75

of the fast routing method make it worthwhile. The idea of redistributing power of

some photons to limit the local density of photons stored is discussed more generally

in Suykens and Willems [Suykens and Willens, 2000].

By capping the number of photons stored per cell instead of using a variable length

list, we can use a vertex program to route photons to grid cells in a single rendering

pass. There are two main drawbacks to this method. First, the photons must be

read from the photon texture and drawn as points, which currently requires a costly

readback to the CPU. Second, the preallocation of storage for each grid cell limits

the method’s flexibility and space-efficiency. Redistribution of power is needed to

represent cells containing more than m
2 photons, and space is wasted for cells with

fewer photons (including empty cells).

6.2.3 The Radiance Estimate

To estimate radiance at a given surface location we need to locate the photons near-

est to the location. For this purpose we have developed a k-nearest neighbors grid

(kNN-grid) method, which is a variant of Elias’s algorithm for finding the k-nearest

neighbors to a sample point in a uniform grid [Cleary, 1979]. First, the grid cell

containing the query point is explored, and all of its photons are examined. As each

photon is examined, it will either be added to the running radiance estimate, or re-

jected. A photon is always rejected if it is outside a predefined maximum search

radius. Otherwise, rejection is based on the current state of the search. If the num-

ber of photons contributing to the running radiance estimate is less than the number

requested, the power of the new photon is added to the running estimate and the

search radius is expanded to include that photon. If a sufficient number of photons

have already been accumulated, the search radius no longer expands. Photons within

the current search radius will still be added to the estimate, but those outside will be

rejected.

CHAPTER 6. PHOTON MAPPING ON GPUS 76

3�4�5 3�6
5 3�7�5 3�8�5

3�9�5 3;:<5 3�=�5 3�>
5

Figure 6.6: Computing the radiance estimate with the kNN-grid. For simplicity, this
figure is shown in 2D. We implement a full 3D search in our system. For this example,
four photons are desired in the radiance estimate. The initial sample point and the
maximum search radius are shown in (a). The first grid cell searched (shaded in (b)
and (c) contributes two photons and expands the search radius. The next cell searched
(d) has one photon added to the radiance estimate, and the other rejected since it is
outside the predefined maximum search radius. The photon outside the search radius
in (e) is rejected because the running radiance estimate has the requested number of
photons, causing the search radius to stop expanding. The cell in (f) contributes one
photon to the estimate. None of the other cells searched in (g) have photons that
contribute to the radiance estimate. The final photons and search radius used for the
radiance estimate are shown in (h).

Grid cells are explored in concentric sets centered about the query point. The

photon search continues until either a sufficient number of photons have been ac-

cumulated, or a predefined maximum search radius has been reached. Figure 6.6

illustrates the kNN-grid algorithm.

The kNN-grid always finds a set of nearest neighbor photons – that is, all the

photons within a sphere centered about the query point. It will find at least k

nearest photons (or as many as can be found within the maximum search radius).

This means that the radius over which photons are accumulated may be larger than it

CHAPTER 6. PHOTON MAPPING ON GPUS 77

is in Jensen’s implementation [Jensen, 2001], which uses a priority queue to select only

the k-nearest neighbors. Accumulating photons over a larger radius could potentially

introduce more blur into our reconstructed estimates. In practice, however, we have

not observed any degradation in quality.

6.2.4 Rendering

To generate an image we use a stochastic ray tracer written using a fragment program.

The output of the ray tracer is a texture with all the hit points, normals, and colors

for a given ray depth. This texture is used as input to several additional fragment

programs. One program computes the direct illumination using one or more shadow

rays to estimate the visibility of the light sources. Another program invokes the ray

tracer to compute reflections and refractions. Finally, we use the kNN-grid fragment

program described in the previous section to compute the radiance estimates for all

the hits generated by the ray tracer. We display the running radiance estimate main-

tained by the kNN-grid algorithm, providing progressively better global illumination

solutions to the viewer.

6.3 Results

All of our results are generated using a GeForce FX 5900 Ultra and a 3.0 GHz Pen-

tium 4 CPU with Hyper Threading and 2.0 GB RAM. The operating system was

Microsoft Windows XP, with version 43.51 of the NVIDIA drivers. All of our kernels

are written in Cg [Mark et al., 2003] and compiled with cgc version 1.1 to native fp30

assembly.

6.3.1 Rendered Test Scenes

In order to simplify the evaluation of the photon mapping algorithm we used scenes

with no ray tracing acceleration structures. For each scene, we write a ray-scene in-

tersection routine in Cg that calls ray-quadric and ray-polygon intersection functions

for each of the component primitives. For these simple scenes, the majority of our

CHAPTER 6. PHOTON MAPPING ON GPUS 78

(a) Bitonic Sort (b) Stencil Routing (c) Software Reference

Figure 6.7: Test scene renderings. Both (a) and (b) were rendered on the GPU
using bitonic sort and stencil routing respectively. Software renderings using Jensen’s
algorithm are shown in (c) for reference.

system’s time is spent building the photon map, and computing radiance estimates.

Very little time is spent on ray intersection. We will examine the performance impact

of complex scenes later in section 6.4.

We have rendered several test scenes on the GPU using our photon mapping

implementation. Figure 6.7 shows three sets of images of our test scenes. The first

column shows the images produced by the GPU when using the kNN-grid on a photon

map generated by bitonic sort. The second shows the results of using stencil routing

and power redistribution when rendering the scenes. The third column shows a

software reference image rendered with Jensen’s algorithm.

CHAPTER 6. PHOTON MAPPING ON GPUS 79

All of our test scenes are rendered with a single eye ray per pixel. The Glass

Ball and Cornell Box scenes have area lights which are randomly sampled by

the ray tracer when computing shadows. The Glass Ball scene samples the light

source four times per pixel, and the Cornell Box scene samples the light source

32 times per pixel. The Ring scene uses a point light source and only shoots one

shadow ray per pixel.

The Glass Ball scene was rendered at 512×384 pixels using a 250×1×250 grid

with 5,000 photons stored in the grid and 32 photons were sought for each radiance

estimate. The Ring scene was rendered at 512×384 pixels using a 250×1×250 grid

with 16,000 photons stored in the grid and 64 photons were sought for each radiance

estimate. Finally, the Cornell Box scene was rendered at 512× 512 pixels using a

25×25×50 grid with 65,000 photons stored and 500 photons sought for each radiance

estimate.

The rendering times for our test scenes vary between 8.1 seconds for the Ring

scene and 64.3 seconds for the Cornell Box scene. Table 6.1 summarizes the

rendering times for the images, broken down by computation type.

The majority of our render time is spent computing the radiance estimates. The

times listed in table 6.1 are for every pixel to finish computation. However, for our

example scenes we find that the system reaches visual convergence (that is, produces

images indistinguishable from the final output) after a much shorter time. In the

Glass Ball scene, a photon map built with bitonic sort will visually converge in

4 seconds — nearly four times as fast as the time listed for full convergence would

suggest. This fast visual convergence happens for two reasons: First, dark areas

of the scene require many passes to explore all the grid cells out to the maximum

search radius, but few photons are found so the radiance estimate changes little.

Second, bright regions have lots of photons to search through, but often saturate

to maximum intensity fairly early. Once a pixel is saturated, further photons found

do not contribute to its final color. Note that these disparities between visual and

total convergence times are not observed when the photon map is built using stencil

routing. Under that method, the grid cells contain a more uniform distribution of

photons, and intensity saturation corresponds to convergence.

CHAPTER 6. PHOTON MAPPING ON GPUS 80

Scene Trace Build Trace Radiance Total
Name Photons Grid Rays Estimate Time
Glass Ball 1.2 s 0.8 s 0.5 s 14.9 s 17.4 s
Ring 1.3 s 0.8 s 0.4 s 6.5 s 9.0 s
Cornell Box 2.1 s 1.4 s 8.4 s 52.4 s 64.3 s

(a) Bitonic Sort

Scene Trace Build Trace Radiance Total
Name Photons Grid Rays Estimate Time
Glass Ball 1.2 s 1.8 s 0.5 s 7.8 s 11.3 s
Ring 1.3 s 1.8 s 0.4 s 4.6 s 8.1 s
Cornell Box 2.1 s 1.7 s 8.4 s 35.0 s 47.2 s

(b) Stencil Routing

Table 6.1: GPU render times in seconds for the scenes shown in figure 6.7, broken
down by type of computation. Table (a) shows the times for the bitonic sort method,
and table (b) shows the times for stencil routing method. Ray tracing time includes
shooting eye rays and shadow rays. The Glass Ball scene and Ring scene were
each rendered at 512×384 pixels. The Cornell Box scene was rendered at 512×512
pixels.

6.3.2 Kernel Instruction Use

A breakdown of how the kernels spend time is important for isolating and eliminating

bottlenecks. The instruction breakdown tells us whether we are limited by compu-

tation or texture resources, and how much performance is lost due to architectural

restrictions. Table 6.2 shows the length of each compiled kernel. These instruction

counts are for performing one iteration of each computation (e.g. a single step of

binary search or a single photon lookup for the radiance estimate). The table fur-

ther enumerates the number of instructions dedicated to texture lookups, address

arithmetic, and packing and unpacking of data into a single output.

We see at least 20 arithmetic operations for every texture access. It may be sur-

prising that our kernels are limited by computation rather than memory bandwidth.

CHAPTER 6. PHOTON MAPPING ON GPUS 81

Kernel Inst TEX Addr Pack

Bitonic Sort 52 2 13 0
Binary Search 18 1 13 0
Rad. Estimate 202 6 47 41
Stencil Routing 42 0 25 0
Rad. Estimate 193 5 20 41

Table 6.2: Instruction use within each kernel. Inst is the total number of instructions
generated by the Cg compiler for one iteration with no loop unrolling. Also shown
are the number of texture fetches (TEX), address arithmetic instructions (Addr), and
bit packing instructions (Pack).

Generally, we would expect sorting and searching to be bandwidth-limited opera-

tions. There are several factors that lead our kernels to require so many arithmetic

operations:

• Limits on the size of 1D textures require large arrays to be stored as 2D textures.

A large fraction of our instructions are spent converting 1D array addresses into

2D texture coordinates.

• The lack of integer arithmetic operations means that many potentially simple

calculations must be implemented with extra instructions for truncation.

• The output from an fp30 fragment program is limited to 128 bits. This limit

forces us to use many instructions to pack and unpack the multiple outputs

of the radiance estimate in order to represent the components in the available

space.

Our kernel analysis reveals the challenges of mapping traditional algorithms onto

GPUs. For algorithms like sorting, the limited functionality of the GPU forces us to

use algorithms asymptotically more expensive than those we would use on processors

permitting more general memory access (e.g. we use the O(n log2
n) bitonic merge

sort instead of O(n log n) quicksort). In other cases, the limitations of the GPU force

us to expend computation on overhead, reducing the effective compute performance.

CHAPTER 6. PHOTON MAPPING ON GPUS 82

In section 6.4, we discuss several possible architectural changes that would improve

the performance of algorithms like photon mapping.

It should be noted that hand coding can still produce kernels much smaller than

those generated by the Cg compiler. For example, we have hand coded a bitonic sort

kernel that uses only 19 instructions instead of the 52 produced by Cg. However, we

determined that the productivity benefits of using Cg during development outweighed

the tighter code that could be achieved by hand coding. As the Cg optimizer improves,

we anticipate a substantial reduction in the number of operations required for many

of our kernels.

6.3.3 SIMD Overhead

Our radiance estimate kernel is run by tiling the screen with large points instead

of with a single quad. Using the NV OCCLUSION QUERY extension, we are able to

stop drawing a tile once all its pixels have finished their work. By terminating some

tiles earlier than others, we are able to reduce the amount of SIMD overhead for our

radiance estimate kernel.

This early termination of tiles substantially reduced the time required for our

scenes to converge. We found tiling the screen with 16 × 16 points resulted in the

largest improvements in convergence time. The Cornell Box scene saw the least

improvement, with the time for the radiance estimate to fully converge dropping from

104 seconds to 52.4 seconds. Full convergence of the Glass Ball scene was more

dramatically affected, dropping from 102 seconds down to 14.9 seconds. These results

are expected as the Cornell Box scene has a fairly uniform photon distribution

but the Glass Ball scene has high variance in photon density. We suggest ideas for

more general ways to reduce SIMD overhead via a fine-grained “computation mask”

in section 6.4.

6.3.4 Interactive Feedback

One advantage of the incremental radiance estimate is that intermediate results can

be drawn directly to the screen. The images in figure 6.7 required several seconds to

CHAPTER 6. PHOTON MAPPING ON GPUS 83

(a) 0.5 s (b) 1.0 s (c) 2.0 s

Figure 6.8: A detailed image of the Glass Ball caustic over time. Reasonably high
quality estimates are available much sooner than a fully converged solution.

fully converge. However, initial estimates of the global illumination are available very

rapidly. Figure 6.8 shows various stages in the convergence of the radiance estimate

for the full resolution Glass Ball scene.

For smaller image windows, our system can provide interactive feedback. When

rendering a 256 × 256 window, we can interactively manipulate the camera, scene

geometry, and light source. Once interaction stops, the photon map is rebuilt and

the global illumination converges in only one or two seconds.

6.4 Discussion and Future Work

In this section we discuss the limitations of the current system and areas for future

work.

6.4.1 Fragment Program Instruction Set

The overhead of address conversion, simulating integer arithmetic, and packing is

a dominant cost in many of our kernels. Addressing overhead accounts for nearly

60% of the cost of the stencil routing, and over 72% of the cost of the binary search.

Similarly, the radiance-estimate kernels currently spend a third to a half of their in-

structions on overhead. Native support for integer arithmetic and addressing of large

1D arrays need not substantially complicate GPU design, but would dramatically

reduce the amount of overhead computation needed in these kernels. Additionally,

CHAPTER 6. PHOTON MAPPING ON GPUS 84

providing multiple outputs would remove the need for aggressive packing of values in

the radiance estimates. Even with the overhead eliminated from the radiance esti-

mate kernels, they still execute several arithmetic instructions and would continue to

benefit from increased floating point performance without being limited by memory

bandwidth.

6.4.2 Memory Bottlenecks

Texture readback and copy can impose significant performance penalties. We have

shown timings for renderings with tens of thousands of photons. The stencil rout-

ing performance is particularly affected by readback performance since we currently

must readback the texture of photons in order to use them as input to the vertex

processor. With a low number of photons, texture readback consumes about 10% of

the photon map construction time. However, as the number of photons increases, the

fraction of time dedicated to photon readback increases to 60% and more of the total

map construction time. The Vertex Shader 3.0 specification found in the DirectX 9

API [Microsoft, 2003] supports displacement mapping, effectively permitting texture

data to control point locations. We anticipate that similar functionality will appear as

an extension to OpenGL, which would eliminate the need for readback in our stencil

sort.

6.4.3 Parallel Computation Model

We mentioned in section 6.3 that we obtained a significant performance improvement

by computing the radiance estimate by tiling the screen with large points instead of

a full screen quad. Unfortunately, tiling is only practical when relatively few tiles

are used and when pixels with long computation times are clustered so that they do

not overlap too many tiles. One natural solution to reducing the SIMD overhead

for pixels with varying workloads is what we call a “computation mask”. A user

controllable mask could be set for each pixel in an image. The mask would indicate

pixels where work has completed, allowing subsequent fragments at that location to

be discarded immediately. This is essentially a user specified early-z occlusion query.

CHAPTER 6. PHOTON MAPPING ON GPUS 85

We observed a performance gain from two to ten using a coarse tiling, and believe

that a computation mask with single pixel granularity would be even more efficient.

6.4.4 Uniform Grid Scalability

One issue associated with rendering more complex scenes is that the resolution of

the grid used for the photon map needs to increase if we want to resolve illumination

details. For sufficiently large scenes a high density uniform grid becomes too large to

store or address on the GPU, and empty cells dominate the memory usage. One fix

is to store the photons in a hash table based on their grid cell address [Wald et al.,

2002]. High density grids no longer have empty cell overhead or addressability issues.

Handling hash table collisions would add some overhead to the radiance estimate,

however, as photons in the hash bucket not associated with the current grid cell must

be examined and ignored. An additional problem for our stencil routing approach is

that power redistribution becomes non-trivial.

6.4.5 Indirect Lighting and Adaptive Sampling

Our current implementation directly visualizes the photon map for indirect lighting

and caustics. While this approach works well for caustics, the indirect lighting can

look splotchy when few photons are used. A large number of photons are needed

to obtain a smooth radiance estimate when the photon map is visualized directly.

Instead, it is often desirable to use distributed ray tracing to sample incident lighting

at the first diffuse hit point, and use the photon map to provide fast estimates of

illumination only for the secondary rays. This final gather approach is more expensive,

although the cost for tracing indirect rays can often be reduced using techniques like

irradiance gradients [Ward and Heckbert, 1992] or adaptive sampling.

We have considered an adaptive sampling algorithm that initially computes a low

resolution image and then builds successively higher resolution images by interpo-

lating in low variance areas and tracing additional rays in high variance areas. Our

initial studies have shown that this algorithm can reduce the total number of samples

CHAPTER 6. PHOTON MAPPING ON GPUS 86

that need to be computed by a factor of 10. However, such a scheme cannot be im-

plemented effectively without support for a fine-grained computation mask like that

described in section 6.4.3.

6.5 Conclusions

We have demonstrated methods for constructing a grid-based photon map, and for

searching for at least k-nearest neighbors using the grid, entirely on the GPU. All

of our algorithms are compute bound, meaning that photon mapping performance

will continue to improve as next-generation GPUs increase their floating point per-

formance. We have also proposed several refinements for extending future graphics

hardware to support these algorithms more efficiently.

We hope that by demonstrating the feasibility of a global illumination algorithm

running completely on graphics hardware, we will encourage GPU designers to im-

prove support for these types of algorithms.

Chapter 7

Ray Tracing and the

Memory–Processor Performance

Gap

Processor designers must be aware of several technology trends that cause the optimal

design for a computer architecture to change with time. In this chapter, we will

focus on one trend that makes designing a faster processor difficult: the increasing

performance gap between memory and the processor. In section 7.2, we show that

the stream programming model results in programs that can be run on hardware

architectures optimized to minimize the penalty for memory accesses — resulting in

better overall utilization of VLSI resources. We will contrast programs written in the

stream programming model with those written in the C-style sequential programming

model in section 7.3 via examples from highly tuned software ray tracing systems.

The conclusion is that programs written for the stream programming model, such as

a streaming ray tracer, are more naturally matched to take advantage of hardware

trends than programs written in the C-style sequential programming model.

87

CHAPTER 7. THE MEMORY–PROCESSOR PERFORMANCE GAP 88

1980 1985 1990 1995 2000 2005

Year

1

10

100

1000

10000

100000

Pe
rf

or
m

an
ce

CPU
Memory

Figure 7.1: The memory–processor performance gap. This figure uses 1980 perfor-
mance levels as a baseline. CPU performance increases at 35% per year through 1986
and then at 55% per year. Memory latency performance improves at 7% per year.
Data from Computer Architecture: A Quantitative Approach, 3rd Edition by John
L. Hennessy and David A. Patterson [2002].

7.1 The Memory–Processor Performance Gap

Over the past several years, there have been tremendous improvements in processor

performance — doubling approximately every 18 months to two years. Memory

chips have also seen improvements in capacity, bandwidth, and latency during this

time. Unfortunately, memory latencies have not decreased at the same rate that

processor performance has increased. Processor performance is increasing at a yearly

rate of 55%, but the performance of memory latency is improving at a rate of only

about 7% [Hennessy and Patterson, 2002]. Thus, the relative penalty for accessing

memory increases with time. This trend, shown in figure 7.1, is known as the memory–

processor performance gap. The challenge for chip designers today is to continue to

increase processor performance while minimizing the impact of large memory access

latencies.

There are two common ways that an architecture can deal with the memory–

processor performance gap: parallelism and locality. At the most basic level, par-

allelism introduces multiple simultaneous computations. Examples of architectural

CHAPTER 7. THE MEMORY–PROCESSOR PERFORMANCE GAP 89

support for parallelism include multiple processors, multiple threads, instruction level

parallelism through pipelining, superscalar processors, and speculative execution.

Parallelism allows one task to execute while another is waiting for a memory re-

quest to return. Unfortunately, compilers can not usually automatically extract high

levels of parallelism from arbitrary code. Instead, programmers often must provide

hints to the compiler to achieve a high degree of parallelization.

The other way an architecture can minimize the effect of the memory–processor

performance gap is to exploit locality. Spatial locality means that nearby memory

addresses tend to be accessed close together in time. Temporal locality means that

recently accessed memory is likely to be accessed again in the near future. Archi-

tectures have typically exploited both types of locality through memory hierarchies.

Memory is typically organized in a hierarchical fashion, with the lowest level (regis-

ters) being fast, small, and close to the processor. Subsequently higher levels in the

hierarchy are further away from the processor, larger, and have longer access times.

Main system memory is the top of the hierarchy and generally has quite slow access

times. Memory hierarchies attempt to exploit spatial locality by sending blocks of

nearby memory when a single address is requested. Temporal locality is exploited

simply by having the hierarchy: memory previously transfered from a higher level

stays in the lower level until another access replaces it. Locality in a program does

not happen automatically, however. As with parallelism, there are limits to to the

amount of locality a compiler and the underlying hardware can extract from a pro-

gram without a programming model that explicitly expresses temporal and spatial

locality.

7.2 Streaming

The stream programming model discussed in chapter 3 has several advantages over

the standard C-style sequential programming model. First, it makes the parallelism in

the code explicit. Second, it constrains the memory access pattern for stream accesses

to exhibit both spatial and temporal locality. Finally, it makes performance tuning

much less processor specific. This model leads to efficient code, and enables the use of

CHAPTER 7. THE MEMORY–PROCESSOR PERFORMANCE GAP 90

special stream hardware that efficiently uses VLSI resources. In this section we will

examine how the parallelism and locality made explicit by the stream programming

model are used by stream processors to overcome the memory–processor performance

gap.

7.2.1 Parallelism

The parallelism in a program written in the stream programming model is explicit

through the use of kernels. All stream data processed by a kernel can by definition

be processed in parallel. The value of a kernel function for a given stream element is

not allowed to depend on the results of any other stream element’s evaluation of the

kernel. This simple constraint allows the underlying hardware to exploit parallelism

in several different ways.

• Data parallelism. Since the result of a kernel execution on a stream element

can not depend on the results of that kernel executing on a neighboring stream

element, processing order constraints are removed. Every stream element can

be processed independently, possibly by a separate processing unit. The stream

programming model makes no assumptions about the number of execution units

that the underlying hardware has, so the level of parallelism can increase sim-

ply by adding more execution units. For example, graphics processors have

exploited data parallelism to increase performance by adding more and more

pipelines.

• Task parallelism. Each kernel is independent. That is, one kernel can begin

executing as soon as its input stream has some elements. Taking advantage

of task parallelism can require more complicated scheduling, but it means that

more execution units can be added at any processing bottlenecks in a compu-

tation to gain a speed increase. Graphics processors exploit task parallelism by

separating vertex processing from fragment processing. As applications have

become more fragment intensive, GPUs have increased the number of fragment

processors relative to vertex processors.

CHAPTER 7. THE MEMORY–PROCESSOR PERFORMANCE GAP 91

• Latency hiding. Perhaps the most interesting way that the stream program-

ming model takes advantage of parallelism is through latency hiding. When

a particular stream element needs to do an expensive memory fetch, its pro-

cessing state can be swapped out into a delay queue and another element can

begin processing. If the queue is long enough, then the outstanding memory

request is guaranteed to return before the swapped out task reaches the front.

This latency hiding technique has been used successfully in the graphics proces-

sor texture memory system [Torborg and Kajiya, 1996; Anderson et al., 1997;

Igehy et al., 1998]. The size of the delay queue needed to hide memory latency

depends on the arithmetic intensity of the executing kernels. Arithmetic inten-

sity is a measure of the amount of computation performed per word of memory

fetched. Kernels with high arithmetic intensity will be inserted into the delay

queue less often than low arithmetic intensity kernels. A stream architecture

optimized for kernels with high arithmetic intensity can use a shorter delay

queue than a stream architecture designed to hide the memory latency of ker-

nels with low arithmetic intensity. The cost savings of a smaller delay queue

means many stream processors are designed to achieve high performance only

on kernels with sufficiently high arithmetic intensity.

7.2.2 Locality

As mentioned in the previous section, the most effective kernels exhibit high arith-

metic intensity. We showed that having many parallel tasks allowed memory fetches

to be amortized over several computational operations. The stream programming

model also makes explicit the spatial and temporal locality of a program. This means

the code can more easily be optimized to make more memory requests to fast memory

instead of slow memory, further reducing the effect of the memory–processor perfor-

mance gap. Spatial and temporal locality are exploited by the stream programming

model as follows:

• Spatial locality. Kernels process input records in streams. Every element in

a stream will be touched when a kernel is executed. The compiler can optimize

CHAPTER 7. THE MEMORY–PROCESSOR PERFORMANCE GAP 92

the data layout of the stream for the memory architecture of the underlying

hardware. In particular, it can organize stream data to be in a contiguous block

so that data transfers from memory can be performed at whatever granularity

is most efficient for the hardware.

• Temporal locality. The data stored in local registers are very likely to be

accessed again soon. Local registers for temporary variables in a kernel are

accessed in essentially random patterns. However, the stream programming

model guarantees that the temporaries only exist within a kernel and typically

limits the number of registers.

7.3 CPU-based Ray Tracing

To date, CPUs have dealt with the memory–processor performance gap in a different

way than stream processors. In this section we examine two interactive ray tracing

systems: the Saarland RTRT system [Wald et al., 2001; 2002] and the Utah *-Ray

system [Parker et al., 1998; 1999a; 1999b]. We will first see what a cache-based

CPU with a single thread of execution can do to overcome the memory–processor

performance gap. We will then examine both RTRT and *-Ray in our discussion of

cache-based multithreaded and multiprocessor architectures.

7.3.1 Single CPU Architectures

In this section we examine cache-based single threaded architectures. We will ignore

simultaneous multithreading [Tullsen et al., 1995] (e.g. Hyper-Threading [Marr et al.,

2002]) in this discussion; we consider it to be a form of multithreading.

Parallelism

Traditional single threaded scalar processors like today’s PCs have few options avail-

able for leveraging the available parallelism in an application. In general, the instruc-

tion sets of these processors require additional data parallel operations commonly

found in vector processors to leverage application parallelism.

CHAPTER 7. THE MEMORY–PROCESSOR PERFORMANCE GAP 93

Modern PC processors provide four to sixteen vector SIMD instructions to improve

performance on code that has fine-grained data parallelism. These SSE and SSE2

instruction sets [Intel, 2004] expose a limited amount of SIMD parallelism, but the

SSE execution unit is exposed as a processor for vectors of a known, fixed length.

The programming model for this unit does nothing to abstract the vector size. When

the SSE unit vector length changes (i.e. becomes twice as wide), existing code has to

be rewritten (and probably restructured) to take advantage of the wider unit.

Locality

In a single threaded system, the CPU relies on low-latency cache memory to reduce the

effects of the memory–processor performance gap. Unlike a stream based architecture

(or multithreaded architecture as we’ll see in the next section), these architectures can

not quickly swap tasks while waiting for memory. The cache is used as a low-latency

read/write buffer so an application does not have to wait for the slow memory system

with every request.

Applications can only achieve the highest performance levels if they are carefully

tuned to the underlying memory system. Data structures have to be tuned to cache

line sizes, and aligned to memory boundaries to avoid cache collisions. Without careful

data structure management, the cache can actually degrade performance. Memory is

loaded into the cache one line at a time. If a set of memory requests touches multiple

elements from the same cache line, the overhead from fetching the line is amortized

over all the accesses. However, sloppy access to the cache can cause more bandwidth

transfer than the data requested. If a set of memory requests only touches a fraction

of each cache line, more data is transferred than needed, wasting bandwidth.

7.3.2 Multithreaded and Multiprocessor Architectures

Both RTRT and *-Ray are ray tracing systems written to run on several processors.

RTRT runs on a cluster of PCs connected by a fast network, and *-Ray is designed

CHAPTER 7. THE MEMORY–PROCESSOR PERFORMANCE GAP 94

to run on a shared memory SGI Origin 2000. Both systems are designed for a multi-

processor implementation. The principles discussed here also apply to multithreaded

architectures, as described by Levy [2002].

Parallelism

RTRT is built out of commodity single-threaded PCs. It exploits the parallelism we

described in the previous section on single-threaded architectures. The cluster im-

plementation of RTRT gives it, along with *-Ray, additional opportunities to exploit

the parallelism found in ray tracing.

• Data parallelism. In a ray tracer, each ray can be processed independently

from every other ray. Both RTRT and *-Ray separate the workload into chunks

of independent rays to be processed. RTRT works on packets of rays simulta-

neously in the SSE core. In both systems, ray distribution to processing cores

is handled at the software level by the programmer.

• Task parallelism. Neither *-Ray nor RTRT exhibit task parallelism. That is,

each takes a ray from generation through shading on the same processor. This

choice is made because of the high cost of moving data between processors. The

RTRT system breaks computation up into small SSE kernels, but these kernels

are not scheduled to run independently.

• Latency hiding. The RTRT system hides latency to remote memory by issuing

network prefetches for batches of rays. RTRT has separate software threads

(with relatively higher context switch times than hardware threads) for fetching

data and for executing the ray tracing computation. The prefetch thread fetches

data while the execution thread processes the batch of rays already on the local

machine.

The same levels of parallelism in the ray tracing algorithm are available to tra-

ditional CPU-based systems as to a stream processor. The challenge on the CPU

is to write code to take advantage of them. Both *-Ray and RTRT must stall their

processors on L2 cache misses or when prefetching fails. They do not use parallelism

CHAPTER 7. THE MEMORY–PROCESSOR PERFORMANCE GAP 95

to cover the memory access latency. As such, both *-Ray and RTRT required massive

engineering efforts and hand coding to achieve high performance.

7.3.3 Locality

Both *-Ray and RTRT use data structures carefully tuned to the underlying archi-

tectures to increase the spatial locality of their ray tracers. The *-Ray grid data

structure was tuned to the cache of the R10000 processor and they optimized further

for TLB hits. The data structures in RTRT were tuned to the Pentium III cache lines,

and tuned to perform well with the SSE execution unit. They separated shading data

from intersection data to reduce useless memory transfers and cache pollution.

Both systems also organized their systems to maximize temporal locality. Rays

were assigned to processors in contiguous screen-space blocks. By blocking the com-

putation in this manner, adjacently-processed rays are likely to access the same pieces

of the acceleration structure and the same scene geometry. This means the processor

caches can effectively reduce the performance impact of the memory access latency.

7.4 Conclusion

We have shown two different ways architectures can minimize the effects of the

memory–processor performance gap: by exploiting parallelism and locality. We have

also seen that the stream programming model and the traditional C-style program-

ming model expose these methods quite differently.

The stream programming model exposes the parallelism and locality of an ap-

plication through a restricted programming model consisting of kernels and streams.

This approach allows a compiler to more easily generate optimal code for the un-

derlying architecture. Applications written in the C-style programming model can

also optimize for a given architecture. But this model places the burden of opti-

mizing on the programmer, so that changes to the architecture can require major

changes to application code. The stream programming model minimizes the amount

of processor-specific tuning that a programmer must do to optimize code performance.

CHAPTER 7. THE MEMORY–PROCESSOR PERFORMANCE GAP 96

Stream processors are designed to efficiently implement the stream programming

model. This does not mean that dedicated stream processors are the only archi-

tectures that a stream program can be efficiently compiled to. Traditional CPUs,

multithreaded architectures, and multiprocessor architectures can also be targets for

a stream program. However, a streaming architecture tends to make better use of

VLSI resources than these other architectures when executing stream programs.

Streaming is not always the best programming model or architecture for a task. As

we saw with sorting in chapter 6, the restrictions of the stream programming model

can force us to use asymptotically slower algorithms for certain tasks. Sometimes,

an algorithm may not have enough parallelism to stream at all. More research into

writing algorithms for streaming may help us to deal with this problem. Another

alternative is to use polymorphic architectures like Smart Memories [Mai et al., 2000]

and TRIPS [Sankaralingam et al., 2003] which can be configured to implement the

stream programming model or the C-style programming model. These architectures

may not be as efficient as stream architectures on highly parallel code, but they

are much more efficient at executing serial code. An architecture with both stream

and serial processors, or a configurable architecture like these, may in fact be the

architecture of choice for a general purpose processing machine.

Chapter 8

Conclusions

8.1 Contributions

This dissertation has made several contributions to computer graphics and graphics

hardware design:

• We have shown how to efficiently implement ray tracing and photon mapping

using the stream programming model. These algorithms are representative of

the types of computation required by nearly every global illumination algorithm.

We have shown that these algorithms map well to the stream programming

model.

• We have shown how the programmable fragment processor of modern GPUs

can implement the stream programming model. This model allows us to map

our global illumination calculations, as well as other general purpose compu-

tations, onto the high-performance GPU. We have shown that our GPU-based

implementation of global illumination algorithms have performance compara-

ble to the fastest known CPU-based implementations. Furthermore, we have

explained why we expect the performance of the GPU-based implementations

to improve more rapidly with time than the CPU-based implementations.

97

CHAPTER 8. CONCLUSIONS 98

• We have analyzed the performance of our algorithms running on graphics hard-

ware. Our analysis provides GPU architects with insight into the costs associ-

ated with making these computations run in real time. We analyzed the per-

formance of some architectural variations (such as MIMD fragment processors)

to help guide the design of future architectures.

8.2 Final Thoughts

We have explored how to merge high performance graphics with high quality graphics.

During the development of the work presented in this dissertation, an entire sub-

field of computer graphics has emerged: general purpose computation on graphics

hardware [GPGPU, 2003]. The work presented here is some of the earliest to take

advantage of (and require) the full generality of modern graphics hardware.

We have proposed that the GPU can be thought of as a stream processor. This

abstraction works for most applications, but the GPU hardware does not support this

abstraction as well as it could. In fact, the stream programming model implemented

by the GPU is far less general than it should be. The most glaring difficulty when

programming the GPU is answering the question “How do I perform data dependent

computations?” We have demonstrated that these computations can be performed

relatively efficiently through specialized reductions (like NV OCCLUSION QUERY) and

early fragment termination. However, the GPU does not currently implement this

model as efficiently as it should and some applications suffer performance penalties

accordingly.

Additionally, programming the GPU is not easy. Vendors have not provided the

support tools necessary to transform the GPU into a viable general-purpose comput-

ing platform. High level languages, debuggers, and code profilers are among the most

important platform development tools available to CPU programmers that GPU pro-

grammers must for the most part live without. We have several high level languages

to choose from [Mark et al., 2003; Microsoft, 2003; ARB, 2003a], but no advanced

tools to work with. Until the rest of these tools are readily available, general purpose

GPU programming will not become mainstream.

CHAPTER 8. CONCLUSIONS 99

Despite these issues, the GPU is very close to becoming a full high performance

parallel co-processor. We have shown that global illumination algorithms like ray

tracing and photon mapping can map onto a streaming architecture, and we have

shown some ways the GPU can evolve into a general purpose stream processor. We

may soon see the gap between realistic and interactive graphics disappear. We hope

this work provides some inspiration and insight to facilitate this transition.

Bibliography

[Amanatides and Woo, 1987] John Amanatides and Andrew Woo. A fast voxel

traversal algorithm for ray tracing. In Eurographics

’87, pages 3–10, August 1987.

[Anderson et al., 1997] Bruce Anderson, Rob MacAulay, Andy Stewart, and

Turner Whitted. Accommodating Memory Latency In

A Low-Cost Rasterizer. In 1997 SIGGRAPH /

Eurographics Workshop on Graphics Hardware, pages

97–102, August 1997.

[ARB, 2003a] OpenGL ARB. ARB Shading Language Extension,

2003. http://oss.sgi.com/projects/ogl-sample/

registry/ARB/shading language 100.txt.

[ARB, 2003b] OpenGL ARB. ARB Fragment Program Extension,

2003. http://oss.sgi.com/projects/ogl-sample/

registry/ARB/fragment program.txt.

[ARB, 2003c] OpenGL ARB. ARB Vertex Program Extension,

2003. http://oss.sgi.com/projects/ogl-sample/

registry/ARB/vertex program.txt.

[ATI, 2001] ATI Technologies Inc. Radeon 8500 Product Web Site,

2001. http://ati.com/products/radeon8500

/radeon8500le128/index.html.

100

BIBLIOGRAPHY 101

[ATI, 2002] ATI Technologies Inc. Radeon 9700 Pro Product Web

Site, 2002. http://ati.com/products/radeon9700/

radeon9700pro/index.html.

[ATI, 2003] ATI Technologies Inc. Radeon 9800 Pro Product Web

Site, 2003. http://ati.com/products/radeon9800/

radeon9800pro/index.html.

[Batcher, 1968] Kenneth E. Batcher. Sorting Networks and their

Applications. Proceedings of AFIPS Spring Joint

Computing Conference, 32:307–314, 1968.

[Bentley, 1975] Jon Louis Bentley. Multidimensional binary search

trees used for associative searching. Communications

of the ACM, 18(9):509–517, 1975.

[Bolz et al., 2003] Jeff Bolz, Ian Farmer, Eitan Grinspun, and Peter

Schröder. Sparse Matrix Solvers on the GPU:

Conjugate Gradients and Multigrid. ACM

Transactions on Graphics, 22(3):917–924, July 2003.

[Buck et al., 2004] Ian Buck, Tim Foley, Daniel Horn, Jeremy Sugerman,

Kayvon Fatahalianand Mike Houston, and Pat

Hanrahan. Brook for GPUs: Stream Computing on

Graphics Hardware. submitted to ACM Transactions

on Graphics, 2004.

http://graphics.stanford.edu/projects/

brookgpu.

[Buck, 2004] Ian Buck. Merrimac Project Page, 2004.

http://merrimac.stanford.edu/.

[Carr et al., 2002] Nathan A. Carr, Jesse D. Hall, and John C. Hart.

The ray engine. In Proceedings of the conference on

BIBLIOGRAPHY 102

Graphics hardware 2002, pages 37–46. Eurographics

Association, 2002.

[Chalmers et al., 2002] Alan Chalmers, Timothy Davis, and Erik Reinhard,

editors. Practical Parallel Rendering. A K Peters,

2002. ISBN 156881-179-9.

[Chen et al., 1991] Shenchang Eric Chen, Holly E. Rushmeier, Gavin

Miller, and Douglass Turner. A Progressive

Multi-Pass Method for Global Illumination. In

Computer Graphics (Proceedings of SIGGRAPH 91),

volume 25, pages 165–174, July 1991.

[Cleary, 1979] John Gerald Cleary. Analysis of an Algorithm for

Finding Nearest Neighbors in Euclidean Space. ACM

Transactions on Mathematical Software (TOMS),

5(2):183–192, 1979.

[Cook et al., 1984] Robert L. Cook, Thomas Porter, and Loren

Carpenter. Distributed Ray Tracing. In Computer

Graphics (Proceedings of SIGGRAPH 84), volume 18,

pages 137–145, July 1984.

[Dally et al., 2002] William J. Dally, Patrick Hanrahan, Mattan Erez,

Timothy J. Knight, Franois Labont, Jung-Ho Ahn,

Nuwan Jayasena, Ujval J. Kapasi, Abhishek Das,

Jayanth Gummaraju, and Ian Buck. Merrimac:

Supercomputing with Streams. In Proceedings of the

2003 ACM/IEEE conference on Supercomputing,

pages 1–11. IEEE Computer Society Press, 2002.

[Delany, 1988] H. C. Delany. Ray tracing on a connection machine.

In Proceedings of the 2nd international conference on

Supercomputing, pages 659–667. ACM Press, 1988.

BIBLIOGRAPHY 103

[DeMarle et al., 2003] D.E. DeMarle, S.G. Parker, M. Hartner, C. Gribble,

and C.D. Hansen. Distributed Interactive Ray

Tracing for Large Volume Visualization. In IEEE

Symposium on Parallel Visualization and Graphics,

pages 87–94, October 2003.

[Doggett, 2003] Michael Doggett. Displacement Mapping. Game

Developers Conference, 2003.

www.gdconf.com/archives/2003/

Doggett Michael.pdf.

[Fujimoto et al., 1986] Akira Fujimoto, Takayuki Tanaka, and Kansei Iwata.

ARTS: Accelerated Ray-Tracing System. IEEE

Computer Graphics & Applications, pages 16–26,

April 1986.

[Glassner, 1984] Andrew S. Glassner. Space Subdivision For Fast Ray

Tracing. IEEE Computer Graphics & Applications,

4(10):15–22, October 1984.

[Glassner, 1989] Andrew S. Glassner, editor. An Introductin to Ray

Tracing. Morgan Kaufmann, 1989. ISBN 0122861604.

[Goodnight et al., 2003] Nolan Goodnight, Cliff Woolley, Gregory Lewin,

David Luebke, and Greg Humphreys. A Multigrid

Solver for Boundary Value Problems Using

Programmable Graphics Hardware. In Graphics

Hardware 2003, pages 102–111, July 2003.

[Goral et al., 1984] Cindy M. Goral, Kenneth E. Torrance, Donald P.

Greenberg, and Bennett Battaile. Modelling the

Interaction of Light Between Diffuse Surfaces. In

Computer Graphics (Proceedings of SIGGRAPH 84),

volume 18, pages 213–222, July 1984.

BIBLIOGRAPHY 104

[Gordon et al., 2002] Michael I. Gordon, William Thies, Michal

Karczmarek, Jasper Lin, Ali S. Meli, Andrew A.

Lamb, Chris Leger, Jeremy Wong, Henry Hoffmann,

David Maze, and Saman Amarasinghe. A stream

compiler for communication-exposed architectures. In

10th international conference on architectural support

for programming languages and operating systems,

pages 291–303. ACM Press, October 2002.

[GPGPU, 2003] GPGPU Website, 2003. www.gpgpu.org.

[Günther et al., 1995] T. Günther, C. Poliwoda, C. Reinhart, J. Hesser,

R. Männer, H.-P. Meinzer, and H.-J. Baur. VIRIM: A

massively parallel processor for real-time volume

visualization in medicine. Computers & Graphics,

19(5):705–710, September 1995.

[Hall, 1999] Daniel Hall. The AR250: A New Architecture For

Ray Traced Rendering. 1999 SIGGRAPH /

Eurographics Workshop On Graphics Hardware - Hot

3D Session 2, 1999.

http://graphicshardware.org/previous/

www 1999/presentations/ar250/index.htm.

[Hall, 2001] Daniel Hall. The AR350: Today’s Ray Trace

Rendering Processor. 2001 SIGGRAPH /

Eurographics Workshop On Graphics Hardware - Hot

3D Session 1, 2001.

http://graphicshardware.org/previous/

www 2001/presentations/Hot3D Daniel Hall.pdf.

[Harris et al., 2002] Mark J. Harris, Greg Coombe, Thorsten

Scheuermann, and Anselmo Lastra. Physically-based

visual simulation on graphics hardware. In

BIBLIOGRAPHY 105

Proceedings of the conference on Graphics hardware

2002, pages 109–118. Eurographics Association, 2002.

[Havran et al., 2000] Vlastimil Havran, Jan Prikryl, and Werner

Purgathofer. Statistical Comparison of Ray-Shooting

Efficiency Schemes. Technical Report TR-186-2-00-14,

Institute of Computer Graphics, Vienna University of

Technology, 2000.

[Hennessy and Patterson, 2002] John L. Hennessy and David A. Patterson.

Computer Architecture: A Quantitative Approach.

Morgan Kaufmann, 2002. ISBN 1558605967.

[Igehy et al., 1998] Homan Igehy, Matthew Eldridge, and Kekoa

Proudfoot. Prefetching in a texture cache

architecture. In 1998 SIGGRAPH / Eurographics

Workshop on Graphics Hardware, pages 133–142,

August 1998.

[Intel, 2004] Intel Corporation. IA-32 Intel Architecture Software

Developers Manual, 2004.

http://www.intel.com/design/Pentium4/

manuals/24547012.pdf.

[Jensen, 1996] Henrik Wann Jensen. Global Illumination using

Photon Maps. In Eurographics Rendering Workshop

1996, pages 21–30, June 1996.

[Jensen, 2001] Henrik Wann Jensen. Realistic Image Synthesis using

Photon Mapping. A K Peters, 2001. ISBN

1568811470.

[Kajiya, 1986] James T. Kajiya. The Rendering Equation. In

Computer Graphics (Proceedings of SIGGRAPH 86),

volume 20, pages 143–150, August 1986.

BIBLIOGRAPHY 106

[Kapasi et al., 2000] Ujval J. Kapasi, William J. Dally, Scott Rixner,

Peter R. Mattson, John D. Owens, and Brucek

Khailany. Efficient conditional operations for

data-parallel architectures. In Proceedings of the 33rd

annual ACM/IEEE international symposium on

Microarchitecture, pages 159–170. ACM Press, 2000.

[Khailany et al., 2000] Brucek Khailany, William J. Dally, Scott Rixner,

Ujval J. Kapasi, Peter Mattson, Jinyung Namkoong,

John D. Owens, and Brian Towles. IMAGINE: Signal

and Image Processing Using Streams. In Hot Chips

12. IEEE Computer Society Press, 2000.

[Kirk, 2001] David Kirk. GeForce3 Architecture Overview, 2001.

http://developer.nvidia.com/docs/IO/

1271/ATT/GF3ArchitectureOverview.ppt.

[Knittel and Straßer, 1997] Günter Knittel and Wolfgang Straßer. VIZARD:

Visualization Accelerator for Realtime Display. In

1997 SIGGRAPH / Eurographics Workshop on

Graphics Hardware, pages 139–147, August 1997.

[Krüger and Westermann, 2003] Jens Krüger and Rüdiger Westermann. Linear

Algebra Operators for GPU Implementation of

Numerical Algorithms. ACM Transactions on

Graphics, 22(3):908–916, July 2003.

[Labonte et al., 2004] Francois Labonte, Mark Horowitz, and Ian Buck. An

Evaluation of Graphics Processors as Stream

Co-processors. In Submitted to ISCA 2004, 2004.

[Larsen and McAllister, 2001] E. Scott Larsen and David McAllister. Fast Matrix

Multiplies using Graphics Hardware. In

Supercomputing 2001, page 55, 2001.

BIBLIOGRAPHY 107

[Levy, 2002] Markus Levy. Tying Up a MIPS32 Processor With

Threads. Microprocessor Report, pages 34–37,

November 2002.

[Ma and McCool, 2002] Vincent C. H. Ma and Michael D. McCool. Low

latency photon mapping using block hashing. In

Proceedings of the conference on Graphics hardware

2002, pages 89–99. Eurographics Association, 2002.

[Mai et al., 2000] Ken Mai, Tim Paaske, Nuwan Jayasena, Ron Ho,

William J. Dally, and Mark Horowitz. Smart

Memories: a modular reconfigurable architecture. In

Proceedings of the 27th annual international

symposium on Computer architecture, pages 161–171.

ACM Press, 2000.

[Mark et al., 2003] William R. Mark, R. Steven Glanville, Kurt Akeley,

and Mark J. Kilgard. Cg: A System for Programming

Graphics Hardware in a C-like Language. ACM

Transactions on Graphics, 22(3):896–907, July 2003.

[Marr et al., 2002] Deborah T. Marr, Frank Binns, David L. Hill, Glenn

Hinton, David A. Koufaty, J. Alan Miller, and

Michael Upton. Hyper-Threading Technology

Architecture and Microarchitecture. Intel Technology

Journal, 6(1), February 2002.

[Microsoft, 2003] Microsoft Corporation. DirectX Home Page, 2003.

http://www.microsoft.com/directx/.

[Möller and Trumbore, 1997] Tomas Möller and Ben Trumbore. Fast, Minimum

Storage Ray-Triangle Intersection. Journal of

Graphics Tools, 2(1):21–28, 1997.

BIBLIOGRAPHY 108

[Muuss, 1995] Michael John Muuss. Towards Real-Time

Ray-Tracing of Combinatorial Solid Geometric

Models. In Proceedings of BRL-CAD Symposium,

June 1995.

[Nishimura et al., 1983] Hitoshi Nishimura, Hiroshi Ohno, Toru Kawata, Isao

Shirakawa, and Koichi Omura. Links-1 - a parallel

pipelined multimicrocomputer system for image

creation. In Proceedings of the 10th annual

international symposium on Computer architecture,

pages 387–394. IEEE Computer Society Press, 1983.

[Nishita and Nakamae, 1985] Tomoyuki Nishita and Eihachiro Nakamae.

Continuous Tone Representation of

Three-Dimensional Objects Taking Account of

Shadows and Interreflection. In Computer Graphics

(Proceedings of SIGGRAPH 85), volume 19, pages

23–30, July 1985.

[NVIDIA, 2002] NVIDIA Corporation. NV Vertex Program Extension,

2002. http://oss.sgi.com/projects/ogl-sample/

registry/NV/vertex program.txt.

[NVIDIA, 2003a] NVIDIA Corporation. GeForce FX 5900 Product Web

Site, 2003. http://nvidia.com/page/fx 5900.html.

[NVIDIA, 2003b] NVIDIA Corporation. NV fragment program

Extension, 2003.

http://oss.sgi.com/projects/ogl-sample/

registry/NV/fragment program.txt.

[NVIDIA, 2003c] NVIDIA Corporation. NV Occlusion Query

Extension, 2003.

BIBLIOGRAPHY 109

http://oss.sgi.com/projects/ogl-sample/

registry/NV/occlusion query.txt.

[Parker et al., 1998] Steven Parker, Peter Shirley, Yarden Livnat, Charles

Hansen, and Peter-Pike Sloan. Interactive Ray

Tracing for Isosurface Rendering. In IEEE

Visualization ’98, pages 233–238, October 1998.

[Parker et al., 1999a] Steven Parker, William Martin, Peter-Pike J. Sloan,

Peter S. Shirley, Brian Smits, and Charles Hansen.

Interactive Ray Tracing. In 1999 ACM Symposium on

Interactive 3D Graphics, pages 119–126, April 1999.

[Parker et al., 1999b] Steven Parker, Michael Parker, Yarden Livnat,

Peter-Pike Sloan, Charles Hansen, and Peter Shirley.

Interactive Ray Tracing for Volume Visualization.

IEEE Transactions on Visualization and Computer

Graphics, 5(3):238–250, July 1999.

[Peercy et al., 2000] Mark S. Peercy, Marc Olano, John Airey, and

P. Jeffrey Ungar. Interactive Multi-Pass

Programmable Shading. In Proceedings of ACM

SIGGRAPH 2000, Computer Graphics Proceedings,

Annual Conference Series, pages 425–432, July 2000.

[Pfister et al., 1999] Hanspeter Pfister, Jan Hardenbergh, Jim Knittel,

Hugh Lauer, and Larry Seiler. The VolumePro

Real-Time Ray-casting System. In Proceedings of

SIGGRAPH 99, Computer Graphics Proceedings,

Annual Conference Series, pages 251–260, August

1999.

[Purcell et al., 2002] Timothy J. Purcell, Ian Buck, William R. Mark, and

Pat Hanrahan. Ray Tracing on Programmable

BIBLIOGRAPHY 110

Graphics Hardware. ACM Transactions on Graphics,

21(3):703–712, July 2002. ISSN 0730-0301

(Proceedings of ACM SIGGRAPH 2002).

[Purcell et al., 2003] Timothy J. Purcell, Craig Donner, Mike Cammarano,

Henrik Wann Jensen, and Pat Hanrahan. Photon

Mapping on Programmable Graphics Hardware. In

Proceedings of the ACM

SIGGRAPH/EUROGRAPHICS Conference on

Graphics Hardware, pages 41–50. Eurographics

Association, 2003.

[Reinhard et al., 2000] Erik Reinhard, Brian Smits, and Chuck Hansen.

Dynamic Acceleration Structures for Interactive Ray

Tracing. In Rendering Techniques 2000: 11th

Eurographics Workshop on Rendering, pages 299–306,

June 2000.

[Rubin and Whitted, 1980] Steven M. Rubin and J. Turner Whitted. A

3-Dimensional Representation for Fast Rendering of

Complex Scenes. In Computer Graphics (Proceedings

of SIGGRAPH 80), volume 14, pages 110–116, July

1980.

[Sankaralingam et al., 2003] Karthikeyan Sankaralingam, Ramadass Nagarajan,

Haiming Liu, Changkyu Kim, Jaehyuk Huh, Doug

Burger, Stephen W. Keckler, and Charles R. Moore.

Exploiting ILP, TLP, and DLP with the

polymorphous TRIPS architecture. In Proceedings of

the 30th annual international symposium on

Computer architecture, pages 422–433. ACM Press,

2003.

BIBLIOGRAPHY 111

[Schmittler et al., 2002] Jörg Schmittler, Ingo Wald, and Philipp Slusallek.

SaarCOR: a hardware architecture for ray tracing. In

Proceedings of the conference on Graphics hardware

2002, pages 27–36. Eurographics Association, 2002.

[Suykens and Willens, 2000] Frank Suykens and Yves Willens. Density Control for

Photon Maps. In Rendering Techniques 2000: 11th

Eurographics Workshop on Rendering, pages 23–34,

June 2000.

[Taylor et al., 2002] Michael Bedford Taylor, Jason Kim, Jason Miller,

David Wentzlaff, Fae Ghodrat, Ben Greenwald, Henry

Hoffman, Paul Johnson, Jae-Wook Lee, Walter Lee,

Albert Ma, Arvind Saraf, Mark Seneski, Nathan

Shnidman, Volker Strumpen, Matt Frank, Saman

Amarasinghe, and Anant Agarwal. The Raw

microprocessor: a computational fabric for software

circuits and general-purpose programs. IEEE Micro,

22:25–35, March 2002.

[Torborg and Kajiya, 1996] Jay Torborg and Jim Kajiya. Talisman: Commodity

Real-time 3D Graphics for the PC. In Proceedings of

SIGGRAPH 96, Computer Graphics Proceedings,

Annual Conference Series, pages 353–364, August

1996.

[Tullsen et al., 1995] Dean M. Tullsen, Susan J. Eggers, and Henry M.

Levy. Simultaneous multithreading: maximizing

on-chip parallelism. In Proceedings of the 22nd annual

international symposium on Computer architecture,

pages 392–403. ACM Press, 1995.

[Waingold et al., 1997] Elliot Waingold, Michael Taylor, Devabhaktuni

Srikrishna, Vivek Sarkar, Walter Lee, Victor Lee,

BIBLIOGRAPHY 112

Jank Kim, Matthew Frank, Peter Finch, Rajeev

Barua, Jonathan Babb, Saman Amarasinghe, and

Anant Agarwal. Baring It All to Software: Raw

Machines. IEEE Computer, 30:86–93, September

1997.

[Wald et al., 2001] Ingo Wald, Philipp Slusallek, Carsten Benthin, and

Markus Wagner. Interactive Rendering with Coherent

Ray Tracing. Computer Graphics Forum,

20(3):153–164, 2001.

[Wald et al., 2002] Ingo Wald, Thomas Kollig, Carsten Benthin,

Alexander Keller, and Philipp Slusallek. Interactive

Global Illumination using Fast Ray Tracing. In

Rendering Techniques 2002: 13th Eurographics

Workshop on Rendering, pages 15–24, 2002.

[Wald et al., 2003] Ingo Wald, Timothy J. Purcell, Jörg Schmittler,

Carsten Benthin, and Philipp Slusallek. Realtime Ray

Tracing and its use for Interactive Global

Illumination. In Eurographics State of the Art

Reports, 2003.

[Wald, 2004] Ingo Wald. Realtime Ray Tracing and Interactive

Global Illumination. PhD thesis, Universität des

Saarlandes, January 2004.

[Ward and Heckbert, 1992] Gregory J. Ward and Paul Heckbert. Irradiance

Gradients. In Rendering Techniques 1992: 3rd

Eurographics Workshop on Rendering, pages 85–98,

May 1992.

BIBLIOGRAPHY 113

[Whitted, 1980] Turner Whitted. An improved illumination model for

shaded display. Communications of the ACM,

23(6):343–349, 1980.

