
Graphics Hardware (2004)
T. Akenine-Möller, M. McCool (Editors)

Efficient Partitioning of Fragment Shaders for
Multiple-Output Hardware

Tim Foley, Mike Houston and Pat Hanrahan †

Stanford University

Abstract
Partitioning fragment shaders into multiple rendering passes is an effective technique for virtualizing shading
resource limits in graphics hardware. The Recursive Dominator Split (RDS) algorithm is a polynomial-time algo-
rithm for partitioning fragment shaders for real-time rendering that has been shown to generate efficient partitions.
RDS does not, however, work for shaders with multiple outputs, and does not optimize for hardware with support
for multiple render targets.
We present Merging Recursive Dominator Split (MRDS), an extension of the RDS algorithm to shaders with
arbitrary numbers of outputs which can efficiently utilize hardware support for multiple render targets, as well
as a new cost metric for evaluating the quality of multipass partitions on modern consumer graphics hardware.
We demonstrate that partitions generated by our algorithm execute more efficiently than those generated by RDS
alone, and that our cost model is effective in predicting the relative performance of multipass partitions.

Categories and Subject Descriptors (according to ACM CCS): I.3.1 [Computer Graphics]: Graphics processors G.2.2
[Mathematics of Computing]: Graph AlgorithmsTrees

1. Introduction

Real-time shading languages for graphics hardware simplify
the task of writing shader code that is portable across a range
of hardware and graphics APIs. However, most current high-
level shading language compilers do not virtualize platform-
specific resource limits such as number of instructions, input
textures, or render targets. We can virtualize these hardware
constraints for fragment shaders with multipass partitioning
by dividing a large shader into multiple rendering passes.

The goal of multipass partitioning is to generate a set of
passes that are equivalent to the input shader such that the
cost of executing all the passes on the target hardware is
minimized. The size of the search space is exponential in the
number of operations, so good heuristic algorithms are nec-
essary to find efficient partitions in reasonable time. The Re-
cursive Dominator Split (RDS) algorithm is a polynomial-
time heuristic algorithm for multipass partitioning that gen-
erates partitions that execute efficiently for a wide variety of

† {tfoley, mhouston, hanrahan}@graphics.stanford.edu

shaders [CNS∗02]. However, RDS is limited to operating on
shaders with a single output color.

Recently, it has been shown that graphics hardware can
also be used to run a large number of non-shading algorithms
including ray tracing [PBMH02], fluid dynamics [HBSL03],
and stream processing based applications [BFH∗04]. These
applications frequently require multiple outputs per pass,
and hardware support for multiple render targets (MRT)
makes it possible to more efficiently execute such shaders.

This paper presents Merging Recursive Dominator Split
(MRDS), an extension of the RDS algorithm to support
multiple-output shaders and graphics hardware with multi-
ple render targets. The primary contributions of this paper
are:

• The extension of the RDS algorithm to support shaders
with multiple outputs. Our algorithm transforms the input
DAG presented to RDS, allowing it to partition multiple
output shaders, even for hardware which supports only a
single render target.

• A pass-merging algorithm which allows partitions gener-
ated by RDS to be optimized for hardware with support

c© The Eurographics Association 2004.

Tim Foley, Mike Houston & Pat Hanrahan / Efficient Partitioning of Fragment Shaders for Multiple-Output Hardware

for multiple render targets. We derive two new algorithms
for multipass partitioning, MRDS and MRDS′, that com-
bine merging with RDS.

• Performance analysis demonstrating that MRDS produces
more efficient partitions of fragment shaders than RDS.
We show that even for shaders with only a single output
value, partitions generated by MRDS can execute more
efficiently on graphics hardware with MRT support.

2. Related Work

2.1. High-Level Shading Languages

Cook[Coo84] and Perlin[Per85] laid the groundwork for
current shading languages. The Renderman shading lan-
guage [HL90] is commonly used today for high-quality of-
fline shading in software rendering systems. The Pixelflow
shading system introduced pfman, a shading language for
real-time rendering [OL98].

The Stanford Real-Time Shading Language (RTSL) sys-
tem compiles a Renderman-like language for early pro-
grammable graphics hardware [PMTH01]. RTSL virtual-
izes “frequencies” of computation, allowing the compiler to
select whether individual operations will be executed per-
vertex or per-fragment.

NVIDIA’s Cg [MGAK03] and Microsoft’s HLSL [Mic03]
are high-level languages for current graphics hardware that
allow programs to be written for either the vertex or frag-
ment processor and then compiled for a variety of hardware
targets. While these languages do not encode any fixed re-
source limitations, the individual compiler targets have strict
limits and will reject shaders that exceed them. Thus, pro-
grammers must write shader implementations for multiple
hardware targets, manually breaking shaders that exceed re-
source limits into multiple passes.

The Sh system is a meta-compiler implemented in C++
for generating shaders at runtime and applying transforma-
tions to them [MQP02, MMT04]. The system does not ex-
plicitly specify resource limitations, although large shaders
can currently fail to execute on graphics hardware.

The OpenGL Shading Language, GLSL, is a high-level
languages for writing vertex and fragment processor shaders
that makes it easy for programmable shaders to integrate
with state from the fixed-function pipeline [KBR03]. The
GLSL specification requires that implementations virtualize
limits on number of instructions and temporary registers, but
forces programmers to query and respect hardware-specific
limitations on other resources.

2.2. Multipass Partitioning

Peercy, et al. map a subset of the Renderman language to a
fixed-function OpenGL platform by abstracting the graphics
hardware as a SIMD processor [POAU00]. Each rendering

pass executes a single SIMD instruction, and a tree-matching
approach is used to map shader computations to the small set
of fixed-function operations available. While this technique
generates good multipass partitions for fixed-function hard-
ware, Proudfoot et al. demonstrate that tree-matching tech-
niques are not sufficient for multipass partitioning on pro-
grammable hardware [PMTH01].

RTSL utilizes the RDS algorithm to virtualize fragment
shading resource limits through multipass partitioning. As
shown in [CNS∗02], this allows for efficient partitioning of
large shaders into multiple passes.

The Ashli system reads shaders in a number of high-level
languages as input, including HLSL, GLSL, and Render-
man, and generates low-level code to execute them on graph-
ics hardware [ATI03a]. Ashli can generate multipass par-
titions for large shaders using RDS and provides the user
with API calls to progressively render their scene. Ashli has
demonstrated the effectiveness of RDS with multiple input
languages.

Both the RTSL and Ashli systems are able to load bal-
ance shading computations between the vertex and fragment
processors. Our implementation does not consider splitting
shaders across the two shading units, only concentrating on
partitioning shaders to run on the fragment processor.

2.3. Overview of the RDS Algorithm

Given a fragment shader represented as a DAG, the prob-
lem of generating a multipass partition is as follows: label a
subset of the n DAG nodes as splits, intermediate values to
be saved to texture memory, and then generate a partition of
those splits into p rendering passes. Each pass then consists
of shader code to generate its constituent splits as outputs,
using texture fetches to restore the values of previously com-
puted splits. Such a partition is valid if each of the passes can
run on the target hardware and they can be ordered to pre-
serve dependencies between splits. Among the many possi-
ble multipass partitions of a given shader, we wish to find
one that is maximally efficient. However, the space of pos-
sible partitions is exponential, so the goal of multipass par-
titioning is to efficiently find a partition that is close to opti-
mal.

The RDS algorithm combines top-down heuristic split-
ting, bottom-up greedy merging, and a limited search algo-
rithm to mark nodes in a shader DAG as splits. We use the
RDS algorithm as the base for our new techniques. RDS as-
sumes that the target hardware can only output a single value
per fragment in each rendering pass, and thus that the shader
DAG has a single root. Along with this graph, RDS operates
on its associated dominator tree. A DAG node x is a domi-
nator of node y, written x dom y, if all paths from the root
of the graph to y pass through x. The immediate dominator
of node y is the unique x 6= y such that x dom y and for all
nodes z 6= y, z dom y ⇒ z dom x. The dominator tree of a

c© The Eurographics Association 2004.

Tim Foley, Mike Houston & Pat Hanrahan / Efficient Partitioning of Fragment Shaders for Multiple-Output Hardware

DAG shares the node set of the graph, and connects each
node as the direct child of its immediate dominator.

Some subset of the nodes in the DAG are multiply-
referenced (MR) nodes, having more than one direct par-
ent. The RDS algorithm is primarily concerned with whether
these MR nodes should be marked as split locations. If a MR
node is marked as a split, we subsequently incur the addi-
tional bandwidth costs of writing the value to texture mem-
ory and restoring that value in later passes. If the node is not
marked as a split, we may incur additional computation costs
from recomputing its value in multiple passes. Both of these
additional costs can be eliminated if we can compute a MR
node in the same pass as its immediate dominator, as all ref-
erences to the MR node are then isolated to a single pass. The
RDS algorithm attempts to eliminate save/recompute costs
when possible and otherwise tries to chose the less expen-
sive of the two options.

RDS uses two graph traversals to partition the DAG, a
top-down subdivision over the dominator tree, and a bottom-
up merge over the DAG. The subdivision traversal makes
heuristic decisions about whether to save or recompute MR
nodes, while the merge traversal greedily combines nodes
with as many of their children as possible. These two traver-
sals operate over the n nodes of the DAG and at each node
use a low-level compiler to check the validity of a fixed
number of subregions of the graph. Assuming that low-level
compilation is a linear-time operation, this leads to an over-
all running time of O(n2). The graph traversals are wrapped
in a limited search over the MR nodes of the DAG. The
search algorithm forces successive MR nodes to be saved
or recomputed (split, or unsplit) and compares the cost of
partitions generated by the graph traversals under these two
constraints. Each node is then fixed in whatever state led to
the better partition and this information overrides the heuris-
tic decisions made in the subdivide step. Using this limited
search can increase the efficiency of generated partitions, but
increases running times by a factor of n, making RDS an
O(n3) algorithm.

3. The Algorithm

3.1. Multiple-Output Shaders

The RDS algorithm cannot operate on shaders with multiple
output values since the dominator tree which drives the sub-
division step is undefined when the shader DAG has multiple
roots. A MR node m that can be reached from two different
DAG roots (outputs) may have no immediate dominator, and
thus would not be considered by the subdivide traversal of
RDS.

We propose a simple solution to this problem that still al-
lows us to take advantage of the information the dominator
tree provides. Before applying RDS to a shader DAG with
multiple root nodes, we insert a new node at the root of the
DAG with operation join and having the shaders outputs as

(a)

(b)

Shader DAG Dominator Graph

Figure 1: (a) A multiple-output shader and its associated
dominator graph. Note that the shaded intermediate nodes
do not have immediate dominators, and the dominator graph
is not a tree. (b) After adding a new root node to the DAG
that joins the two outputs, the dominator graph is tree-
structured.

children. We define the join operation so that it compiles suc-
cessfully if and only if all of its children are marked as splits.
Figure 1 illustrates how this procedure is applied to a DAG
with multiple roots. The left graphs represent shading DAGs
and the right graphs are their associated dominator graphs.
The addition of the join operation generate a single-rooted
DAG from which a dominator tree can be derived. In this
way we can partition multiple-output shaders into multiple
single-output rendering passes while remaining transparent
to the existing RDS algorithm.

The result of the above algorithm will be a set of splits,
and for hardware that can only write a single output per pass
we can simply assign each split to its own rendering pass
to achieve good results. However, on graphics hardware that
supports multiple render targets, we may be able to produce
more efficient partitions.

3.2. Multiple-Output Hardware

Typically, the outputs of multiple-output shaders will not
be disjoint, and thus intermediate results may be shared be-
tween outputs. The immediate dominator of such intermedi-
ate value nodes is the root join operation, and thus the dom-
inator tree cannot help us to eliminate the save/recompute
costs for such nodes. However, if we can write all of the out-
puts that depend on such a node m in the same pass that we
use to compute m, we can avoid these additional costs.

This situation is not unique to shaders with multiple out-
puts. As Figure 2 demonstrates, even in shaders with only a
single output, there may be sets of intermediate values that
can be computed together much more efficiently than apart.
We can extend the concept of dominance in a graph to de-
scribe this situation:

c© The Eurographics Association 2004.

Tim Foley, Mike Houston & Pat Hanrahan / Efficient Partitioning of Fragment Shaders for Multiple-Output Hardware

.
.
.

.
.
.

.
.
.

x y

(b)(a) (c)

Figure 2: A “ladder” configuration of intermediate value
nodes. (a) The nodes x and y both depend on all previous
intermediate values. (b) If x and y are marked as splits by a
single-output partitioning algorithm, then the shaded nodes
will have to be recomputed. (c) A MRT-aware algorithm can
save both splits in a single pass and avoid the recomputa-
tion.

Given a DAG node x and a set of nodes S, we say that x
is a dominating set of x, written S dom x if and only if ev-
ery path from a root of the DAG to node x passes through
a node in S. The parents of a node x form a dominating set
of x, and the set of shader outputs dominate every node in a
shader DAG. Given this notation, we can generalize some of
our previous statements about how dominance affects mul-
tipass partitioning: if a DAG node x is computed in a pass
with output set S, where S dom x, then we can eliminate any
save/recompute costs for x.

We can realize the benefits of this effect incrementally by
merging the passes of an existing multipass partition. If an
MR node n is being recomputed in many passes, and two of
those passes are merged then some recomputation costs for
m are eliminated. By repeatedly merging passes it may be
possible to merge m with a dominating set and eliminate all
of these costs. The following algorithm, MERGE-PASSES,
uses greedy pass-merging to decrease recomputation costs
in a multipass partition:

// input: T a set of splits as generated by RDS
MERGE-PASSES(T)

// generate initial set of passes
for each node n in T

create a pass with output n and add it to the list of passes
// create list of candidate merges
for each pair (x,y) of nodes in T

score← TEST-MERGE(pass(x), pass(y))
if score≥ 0 then

add (score,x,y) to array A of potential merges
sort A in decreasing order by score
// attempt to execute merges from best to worst
for each tuple (score,x,y) in A

if pass(x) 6= pass(y) then
// score may have changed, so revalidate

score← TEST-MERGE(pass(x), pass(y))
if score≥ 0 then

EXECUTE-MERGE(pass(x), pass(y))

// input: A, B passes (sets of nodes)
// output: a score measuring how “good” the merge is
TEST-MERGE(A, B)

// if there is an ordering conflict, we cannot merge
if ancestors(A)∩descendants(B) 6= ∅

∨ descendants(A)∩ancestors(B) 6= ∅

then return −1
M← out puts(A)∪out puts(B)

// use low-level compiler to check validity
if pass-valid(M) then

// score is how much the merge would improve partition cost
costmerged ← pass-cost(M)

return cost(A)+ cost(B)− costmerged
else return −1

// input: A, B passes (sets of nodes)
EXECUTE-MERGE(A, B)

// create and initialize the merged pass
create pass P
out puts(P)← out puts(A)∪out puts(B)
cost(P)← pass-cost(out puts(P))
remove A, B from list of passes
add P to list of passes
// update membership information for nodes in this pass
for each node n in out puts(P)

pass(n)← P

This algorithm operates on a list of splits and produces
a list of passes. It begins by considering all possible pair-
wise merges between splits and determining whether they
are valid. If there exists some split z such that z is an ances-
tor of one pass and a descendant of the other (i.e. z depends
on the outputs of A and an output of B depends on z) we dis-
miss the merge as invalid. Otherwise we construct set M, the
union of the output splits of passes A and B. If the elements
of M cannot be generated in a single rendering pass on the
target hardware, then the merge is invalid. For every valid
merge we calculate a score measuring the improvement in
cost of the merged pass over the two input passes, dismiss-
ing merges that yield negative scores. We iterate over the
remaining potential merges in order of decreasing score and
try to execute them. It is possible that earlier merges will
have invalidated a potential merge or that it will no longer
improve the overall score, so we re-check validity before ex-
ecuting any given merge.

The running time of this algorithm is dominated by the
initial search for valid merges. For an n-node DAG and s
splits, the search operates over s2 pairs of splits and per-
forms size-s set operations and an O(n) compiler call. This
yields an overall running time of O(s2(s + n)) for MERGE-
PASSES. In general, s is O(n) in the number of DAG nodes,
and thus the algorithm is O(n3), although in practice we ex-
pect s to be small relative to n.

c© The Eurographics Association 2004.

Tim Foley, Mike Houston & Pat Hanrahan / Efficient Partitioning of Fragment Shaders for Multiple-Output Hardware

If the MERGE-PASSES algorithm is run directly on the
results of our multiple-output enabled RDS, then the result
is an O(n3) algorithm for generating multipass partitions for
MRT hardware. We call this algorithm MRDS, or Merging
Recursive Dominator Split. We will demonstrate in the fol-
lowing section that MRDS can significantly improve the ef-
ficiency of multipass partitions generated by RDS.

However, it is possible that MRDS might produce poor
partitions for certain shaders. Sets of splits that lead to ex-
pensive partitions when executed with one split per pass
might yield highly optimized partitions after greedy merg-
ing. The search algorithm employed by RDS does not con-
sider the potential for merging when evaluating the rela-
tive quality of partitions, and thus could make sub-optimal
save/recompute decisions based on the incomplete informa-
tion available to it. Thus, we introduce a second modified
RDS algorithm, MRDS′.

The MRDS′ algorithm integrates greedy pass-merging di-
rectly into the search performed by RDS. When RDS evalu-
ates the cost of a partition in order to make save/recompute
decisions, we first apply pass-merging to collapse the candi-
date set of splits into a smaller number of passes. While this
modification provides the RDS search with more accurate
cost information, it comes with a penalty in asymptotic per-
formance. The RDS algorithm wraps a linear search around
an O(n2) graph traversal, and MRDS′ introduces the addi-
tional cost of O(n3) merging inside this search. Thus MRDS′

increases compile times by a factor of n over RDS, resulting
in an O(n4) algorithm.

3.3. Implementation

We have implemented the RDS, MRDS and MRDS′ al-
gorithms for multipass partitioning into the BrookGPU
[BFH∗04] system for stream computing on GPUs. Although
the Brook language and the BrookGPU system are de-
signed for stream computation rather than interactive shad-
ing, the implementation of our multipass partitioning al-
gorithms are devoid of any concepts specific to streaming.
The BrookGPU compiler transforms functions written in the
Brook language into high-level fragment shaders, construct-
ing a shader DAG from this representation. Our multipass
partitioning algorithms operate on this DAG, using modu-
larized compiler back-ends to encapsulate the validity test-
ing and cost metrics required. In order to evaluate the ef-
fectiveness of MRDS and MRDS′ at generating multipass
partitions for hardware with support for multiple render tar-
gets, we developed a back-end that generates DirectX 9 pixel
shader code for the ATI Radeon 9800XT [Mic01, ATI03b].
This back-end uses the Microsoft HLSL compiler, fxc to per-
form validation and generate low-level code.

Whereas the RDS implementation used in RTSL operates
over a DAG of low-level machine instructions, our system
operates over a DAG of the high-level expression tree and

relies on the external compiler to perform instruction selec-
tion. This makes implementing a back-end target much sim-
pler as it need only pass high-level code to an external com-
piler. However, opportunities for optimization could be lost
by operating on code before instruction selection. Our im-
plementation will not split shader operations that are repre-
sented as primitive function calls, such as vector cross prod-
uct, across passes even if they consist of multiple machine
instructions. Furthermore, we generate DAG nodes for oper-
ations, such as swizzles and negation, which might be free
on a particular hardware target.

3.4. Cost Metric

All of our multipass partitioning algorithms rely on a cost
metric to provide predictions of shader performance on the
target hardware. The original RDS implementation used a
linear cost model that combined the total number of passes,
arithmetic instructions and texture-fetch instructions in a
given shader partition. In trying to model shader execution
cost on our target platform, we have extended this model.

Chan et al. estimate the cost of each shader pass by mea-
suring the time taken to render a single-pixel quad on the
target hardware and convert this into units of GPU instruc-
tion cycles. The goal is to measure the cost of API overhead
and setup to render a primitive, while making the cost of any
per-fragment operations negligible [CNS∗02]. However, be-
cause shader execution is typically asynchronous with API
calls on the CPU, this overhead can be mitigated by running
a shader on enough data so that GPU execution time domi-
nates API overhead. We expect that in practice most appli-
cations of MRDS will apply to shaders being run on suffi-
ciently large datasets to be GPU-limited rather than CPU-
limited. Therefore we do not use the same procedure to de-
rive per-pass overhead as Chan et al.

However, this is not to say that we do not account for per-
pass overhead. Experimentally we have found that the dom-
inant overhead of each rendering pass is in writing shader
results to off-chip framebuffer memory. We measured this
cost by comparing execution times t0 when running i in-
structions over n fragments and t1 when running i/2 in-
structions over 2n fragments, always operating on enough
data to be GPU-limited. If we fit a cost model of the form
cost = ci · i ·n+cp ·n then we expect to find cp = (t1−t0)/n.
We have experimentally measured cp, the per-fragment pass
overhead, to be equivalent to approximately 10 instructions
on our target platform.

We must also take into account the total number of outputs
being written in a given pass, as each output incurs an addi-
tional bandwidth penalty. We have found that shader output
writes appear to mask the instruction execution time of small
shaders. We have determined that single-output shaders with
only a single instruction take the same amount of time to ex-
ecute as those with 6 instructions, and that this number of

c© The Eurographics Association 2004.

Tim Foley, Mike Houston & Pat Hanrahan / Efficient Partitioning of Fragment Shaders for Multiple-Output Hardware

instructions increases linearly as we increase the number of
shader outputs.

We have measured the latency of a texture fetch on our
target hardware to be equivalent to approximately 8 instruc-
tions for textures in float4 format. However, accounting for
this delay with a linear term fails to take into account the
potential for the hardware to schedule instructions to hide
the latency of texture fetches. In the best case, the pipeline
can completely hide texture latency and our execution time
is max(ttextureFetch, tinstructionExecute), while in the worst case
every texture fetch leads to a stall, and execution time is
ttextureFetch + tinstructionExecute. Rather than try to inspect the
texture-access behavior of a pass, we choose to model this
term as a simple average of the best-case and worst-case
forms.

The complete equation that we use to measure the cost
cpass of a shader pass consisting of i total instructions, t tex-
ture fetches and writing o output values is:

cpass = cp +max(co ·o,
(i+ ct · t)+max(i,ct · t)

2
)

where cp = 10 is the per-fragment pass overhead, co = 6 is
the number of instructions masked by each output write, and
ct = 8 is the latency of a texture fetch.

4. Results

In order to evaluate the quality of partitions generated by our
new algorithms, we applied four different partitioning strate-
gies to four different shaders written in the Brook language.
The partitioning strategies were:

• Ideal - Represents a partitioning strategy that always puts
all computation into a single rendering pass. The parti-
tions generated by this strategy cannot be run on the target
hardware, but are useful for comparison.

• RDS - The original RDS algorithm modified to accept
multiple-output shaders.

• MRDS - The RDS strategy followed by our greedy pass-
merging algorithm.

• MRDS′ - The RDS strategy with greedy pass-merging in-
tegrated into the RDS search step.

The applications were selected to provide a range of
shader sizes, outputs, and uses. The individual applications
are:

• Particle - A shader that advances a particle-system based
cloth simulation. This shader uses two outputs to write the
new position and velocity of each particle in the system.
Each particle is constrained to up to 8 of its neighbors by
spring forces. This application is representative of n-body
dynamics simulations

• Fractal - A shader that computes a 40-iteration approx-
imation to the Mandelbrot set. The shader is vectorized
to process 4 adjacent points at once. This application was

chosen to demonstrate that even shaders with a single out-
put value may have strongly coupled intermediate values,
and thus can benefit from hardware support for multiple
outputs.

• Matrix - A shader that computes an 8 by 8 dense matrix
multiply. Input and output matrices are packed with two
float4 values per row. This shader shows how the merg-
ing algorithms, while not parameterized by the number of
outputs supported in hardware, can partition shaders that
use more than the number of supported outputs.

• Fire - A procedural volumetric fire shader [Ura02]. This
shader uses 5 octaves of 4-dimensional Perlin noise, and
demonstrates an extremely large shading computation
with many levels of texture indirection.

Table 1 shows the results of partitioning and executing our
applications under each of our partitioning strategies. These
tables show the number of passes in each partition, along
with its cost as given by our metric. The execution timing
results represent the average per-fragment execution time,
in nanoseconds, when running the partitioned shader on the
graphics hardware. These values were generated by amortiz-
ing the time taken to shade a 1024 by 1024 pixel quad in the
case of Particle and Fractal, and a 512 by 512 pixel quad in
the case Matrix and Fire. All timing results were averaged
over 1000 iterations. The compilation times represent the to-
tal time spent in the partitioning algorithm, including time
spent waiting on the external compiler.

5. Discussion

Partitions generated by MRDS and MRDS′ outperform
those generated by RDS for all of our shaders, including
those that write only a single output. The relative increase
in performance varies across the applications, and we will
discuss these variations individually.

Although the Particle shader writes multiple output val-
ues, compiling for hardware with MRT support does not sig-
nificantly increase its performance over a partition generated
for single-output hardware. The majority of the instructions
in the shader are used to calculate a sum of neighbor forces,
and this running sum can be maintained with a single out-
put per pass. The final integration of position and velocity is
the only step that generates multiple values. Despite a 33%
decrease in the number of passes, the merged partitions take
only 5% less time to execute. This result indicates that per-
pass overhead is not the dominant factor in shader perfor-
mance.

The Fractal shader, despite writing only a single output
value, shows a marked improvement in execution time when
partitioned with MRDS or MRDS′ rather than RDS. The two
merged partitions execute 47% more quickly than the RDS
partition. We attribute this result to the fact that the Frac-
tal shader maintains two live values throughout most of its
body. These values are used in an iterative computation, with

c© The Eurographics Association 2004.

Tim Foley, Mike Houston & Pat Hanrahan / Efficient Partitioning of Fragment Shaders for Multiple-Output Hardware

Particle Ideal RDS MRDS MRDS′

Passes 1 6 4 (33%) 4 (33%)
Cost 276 449 389 (13%) 389 (13%)
ArithOps 170 210 208 (1%) 208 (1%)
TexOps 19 33 28 (15%) 28 (15%)
TimeExec - 56 53 (5%) 53 (5%)
TimeComp - 0.71 0.71 0.80

Fractal Ideal RDS MRDS MRDS′

Passes 1 10 4 (60%) 4 (60%)
Cost 225 666 324 (51%) 324 (51%)
ArithOps 205 355 211 (41%) 211 (41%)
TexOps 2 38 14 (63%) 14 (63%)
TimeExec - 119 63 (47%) 63 (47%)
TimeComp - 7.9 7.9 9.2

Matrix Ideal RDS MRDS MRDS′

Passes 1 32 10 (68%) 10 (68%)
Cost 401 2128 1028 (52%) 966 (55%)
ArithOps 208 656 326 (50%) 298 (55%)
TexOps 32 176 88 (50%) 82 (53%)
TimeExec - 380 290 (24%) 279 (27%)
TimeComp - 4.3 4.4 14

Fire Ideal RDS MRDS MRDS′

Passes 1 37 22 (36%) 22 (36%)
Cost 1630 3109 2799 (10%) 2722 (12%)
ArithOps 690 1334 1249 (6%) 1329 (0%)
TexOps 150 237 227 (4%) 213 (10%)
TimeExec - 3172 2225 (30%) 1879 (41%)
TimeComp - 78 78 244

Table 1: Results of partitioning several shaders with RDS, MRDS and MRDS′. For each partition we list the number of passes,
cost measure, number of arithmetic and texture operations,execution time (in nanoseconds per fragment), and compilation time
(in minutes). Percentages measure relative improvement over the RDS partition.

each successive value depending on both previous values,
yielding the previously-described “ladder” configuration in
the shader DAG. This ladder configuration forces the RDS
partition to duplicate many calculations, leading to a 73% in-
crease in the number of arithmetic operations over the Ideal
partition. The merged partitions, on the other hand, introduce
no additional arithmetic instructions beyond those needed to
write intermediate outputs.

The Matrix shader shows modest improvements in execu-
tion time for both merged strategies. The MRDS and MRDS′

partitions are 24% and 27% more efficient, respectively, than
the partition generated by RDS. As in the case of the Particle
shader, a drastic decrease in the number of passes executed
did not lead to a proportional increase in execution time. The
Matrix shader also clearly demonstrates that our cost metric
is not directly proportional to execution time. The cost of the
RDS partition is approximately 2.2 times that of the MRDS′

partition, but takes only 36% more time to execute. How-
ever, it appears that relative differences in partition costs for
a particular shader are predictive of relative performance.

The Fire shader also shows appreciable improvements of
30% and 40% over RDS when partitioned with MRDS and
MRDS′. It is interesting to note that although the MRDS′

partition has a better score than the MRDS partition, it con-
sists of the same number of passes, and actually executes
more arithmetic instructions. Instead of minimizing instruc-
tion counts, the MRDS′ algorithm found a partition that re-
duced the total number of texture fetches at the expense of
arithmetic operations. This is a sensible optimization for a
bandwidth-limited shader, and our performance results show

that these decisions yield a 16% increase in performance
over MRDS.

Both MRDS and MRDS′ yield partitions of the Particle
and Fractal shaders with the same overall cost and execution
time, although the generated passes differ in the placement
of a few instructions. For these relatively small shaders it ap-
pears that there exists a small set of nodes at which efficient
splits can be made, and thus both MRDS and MRDS′ se-
lect similar points at which to split the DAG. For the larger
Matrix and Fire shaders we find that the MRDS′ strategy
generates partitions with slightly better performance. In the
case of the Matrix shader, the MRDS′ partition has the same
number of passes as the MRDS partition, but saves more
intermediate values and thus avoids certain recomputation
costs. Although the Fire shader saw modest gains in runtime
performance from using MRDS′, we note that compilation
with MRDS′ took over a factor of three times longer than
with MRDS.

For all of our applications the RDS and MRDS compila-
tions take a comparable amount of time. In the case of the
Particle and Fractal shaders the MRDS′ algorithm increases
these compile times by less than 17%. For these applications
the number of splits is relatively small and the merge oper-
ations are quite efficient. In the case of the Matrix and Fire
applications the number of splits is higher and the merges
dominate the cost of the MRDS′ compiles. These results also
demonstrate that the number of splits s is often much less
than n, and the single merge step of MRDS is relatively in-
expensive. We note that in every case between 94% and 97%
of the compilation time was spent in the external compiler,
fxc.

c© The Eurographics Association 2004.

Tim Foley, Mike Houston & Pat Hanrahan / Efficient Partitioning of Fragment Shaders for Multiple-Output Hardware

In general our results indicate that although the MRDS′

algorithm generates better partitions than MRDS for some
shaders, the improvements in performance will often not be
sufficient to justify the additional time complexity. However,
the MRDS algorithm performs similarly to RDS, and im-
proves performance on MRT hardware even for shaders that
write only a single output value.

6. Conclusion and Future Work

We have described a set of modifications to the RDS algo-
rithm that allow it to partition fragment shaders with multi-
ple outputs, and to take advantage of hardware with support
for multiple render targets. We have demonstrated that these
modifications can allow partitions generated for hardware
with multiple outputs to outperform partitions limited to sin-
gle outputs, even for shaders producing only a single result.
Although these modifications greatly expand the range of
shaders to which multipass partitioning can be applied, a
number of issues still remain.

While our implementation uses an external shader com-
piler to perform validation checks and measure resource us-
age, our results indicate that there is a clear benefit to inte-
grating the MRDS algorithm for multipass partitioning into
existing shader compilers. As the original RDS paper men-
tions, one way to improve the asymptotic bounds of the
partitioning process is to utilize incremental compilation of
shader passes. Using such a strategy we can effectively re-
duce the cost of compiler calls from O(n) to O(1).

It is useful to know how close the results of a heuristic
algorithm, such as ours, are to optimality. The size of the
search space involved, and the size of the shaders we use,
make finding optimal partitions by brute force prohibitive. It
may be possible to utilize directed search algorithms, such
as A*, to find optimal partitions in far less time than a brute-
force search. This would require the careful formulation of
the state space to be searched, as well as the derivation of a
good admissible heuristic to direct the search.

Our analysis of multipass partitioning assumes that a
shader computation can be expressed as a single dataflow
DAG, and thus does not handle loops, predication, or any
data-dependent control flow. Future graphics hardware will
support data-dependent branching in the fragment proces-
sor, and it is interesting to explore multipass partitioning
algorithms that handle branching. It is possible that cer-
tain branching constructs will yield better performance when
control flow is divided between the CPU and GPU, requiring
partitioning algorithms to balance this load.

Although some hardware resource limits, such as instruc-
tion counts, have grown drastically with successive genera-
tions of programmable hardware, others, such as the number
of available texture coordinate interpolants, have remained
relatively low. Thus, shaders that use constrained resources
will still require multipass partitioning. As instruction counts

increase into the hundreds or thousands, a partitioning algo-
rithm with running time polynomial in the number of shad-
ing instructions can be prohibitively expensive.

An interesting area for future research is to develop par-
titioning strategies that operate on dependency graphs of
only the most constrained resources. This may be modeled
as a constraint satisfaction problem, and limiting the search
space in this way may drastically reduce compile times.
Thinking of multipass partitioning in terms of resource al-
location, this constraint search is closely related to register
allocation and instruction scheduling for CPUs. Combining
these two approaches, it may be possible to further improve
the running time of multipass partitioning algorithms.

7. Acknowledgments

We would like to thank Eric Chan for the original RDS
implementation from the Stanford Real-Time Shading Lan-
guage system. Kekoa Proudfoot and Ren Ng provided in-
valuable feedback during the development of the MRDS al-
gorithm. Kayvon Fatahalian provided the benchmarking re-
sults that drove our cost model.

This work was done on the Brook for GPUs system, which
is supported by DARPA. Additional support has been pro-
vided by ATI, IBM, NVIDIA and SONY. The Brook pro-
gramming language has been developed with support from
Department of Energy (contract B527299-4), NNSA, under
the ASCI Alliances program (contract LLL-B341491), the
DARPA Smart Memories Project (contract MDA904-98-R-
S855), and the DARPA Polymorphous Computing Architec-
tures Project (contract F29601-00-2-0085).

References

[ATI03a] ATI: ASHLI - advanced shading language in-
terface, 2003. http://www.ati.com/developer/ashli.html.

[ATI03b] ATI: Radeon 9800 tech-
nical specification, 2003.
http://www.ati.com/products/radeon9800/radeon9800pro/specs.html.

[BFH∗04] BUCK I., FOLEY T., HORN D., SUGERMAN

J., FATAHALIAN K., HOUSTON M., HANRA-
HAN P.: Brook for GPUs: Stream computing
on graphics hardware. In Proceedings of ACM
SIGGRAPH (to appear) (2004).

[CNS∗02] CHAN E., NG R., SEN P., PROUDFOOT K.,
HANRAHAN P.: Efficient partitioning of frag-
ment shaders for multipass rendering on pro-
grammable graphics hardware. In Proceedings
of the conference on Graphics hardware 2002
(2002), Eurographics Association, pp. 69–78.

[Coo84] COOK R. L.: Shade trees. In Proceedings
of the 11th annual conference on Computer
graphics and interactive techniques (1984),
ACM Press, pp. 223–231.

c© The Eurographics Association 2004.

Tim Foley, Mike Houston & Pat Hanrahan / Efficient Partitioning of Fragment Shaders for Multiple-Output Hardware

[HBSL03] HARRIS M. J., BAXTER W. V., SCHEUER-
MANN T., LASTRA A.: Simulation
of cloud dynamics on graphics hard-
ware. In Proceedings of the ACM SIG-
GRAPH/EUROGRAPHICS conference on
Graphics hardware (2003), Eurographics
Association, pp. 92–101.

[HL90] HANRAHAN P., LAWSON J.: A language
for shading and lighting calculations. In Pro-
ceedings of the 17th annual conference on
Computer graphics and interactive techniques
(1990), ACM Press, pp. 289–298.

[KBR03] KESSENICH J., BALDWIN D., ROST R.:
The OpenGL Shading Language, 2003.
http://www.opengl.org/documentation/oglsl.html.

[MGAK03] MARK W. R., GLANVILLE R. S., AKELEY

K., KILGARD M. J.: Cg: A system for pro-
gramming graphics hardware in a c-like lan-
guage. ACM Transactions on Graphics 22, 3
(July 2003), 896–907.

[Mic01] MICROSOFT: DirectX product web site, 2001.
http://www.microsoft.com/directx/.

[Mic03] MICROSOFT: High-level shader language,
2003. http://msdn.microsoft.com/library/default.asp?

url=/library/en-us/directx9_c/directx/graphics/ refer-

ence/Shaders/HighLevelShaderLanguage.asp.

[MMT04] MCCOOL M. D., MOULE K., TOIT S. D.: Sh:
Embedded metapgramming language, 2004.
http://libsh.sourceforge.net/.

[MQP02] MCCOOL M. D., QIN Z., POPA T. S.: Shader
metaprogramming. In Proceedings of the ACM
SIGGRAPH/EUROGRAPHICS conference on
Graphics hardware (2002), Eurographics As-
sociation, pp. 57–68. revised version.

[OL98] OLANO M., LASTRA A.: A shading language
on graphics hardware: the pixelflow shading
system. In Proceedings of the 25th annual con-
ference on Computer graphics and interactive
techniques (1998), ACM Press, pp. 159–168.

[PBMH02] PURCELL T. J., BUCK I., MARK W. R., HAN-
RAHAN P.: Ray tracing on programmable
graphics hardware. ACM Transactions on
Graphics 21, 3 (July 2002), 703–712. ISSN
0730-0301 (Proceedings of ACM SIGGRAPH
2002).

[Per85] PERLIN K.: An image synthesizer. In Pro-
ceedings of the 12th annual conference on
Computer graphics and interactive techniques
(1985), ACM Press, pp. 287–296.

[PMTH01] PROUDFOOT K., MARK W. R., TZVETKOV

S., HANRAHAN P.: A real-time procedu-
ral shading system for programmable graph-
ics hardware. ACM Transactions on Graphics
(August 2001).

[POAU00] PEERCY M. S., OLANO M., AIREY J.,
UNGAR P. J.: Interactive multi-pass pro-
grammable shading. In Proceedings of
the 27th annual conference on Computer
graphics and interactive techniques (2000),
ACM Press/Addison-Wesley Publishing Co.,
pp. 425–432.

[Ura02] URALSKY Y.: Volumetric fire cg shader, 2002.
http://www.cgshaders.org/shaders/show.php?id=39.

c© The Eurographics Association 2004.

