1. The Second Fundamental Form and the Shape Operator

We defined the differential of the Gauss map of a surface S at $p \in S$ as the linear mapping $Dn_p : T_pS \to T_pS$. Another name for this is the shape operator (actually, $-Dn_p$ is the shape operator). Associated to the shape operator is the self-adjoint quadratic form $A_p(V,W) := -\langle Dn_p(V), W \rangle$ called the second fundamental form. A possible point of confusion from lecture today concerns the principal curvatures and directions — what matrix are they the eigenvalues and eigenvectors of?

Here is an explanation. Let $M : \mathbb{R}^2 \to \mathbb{R}^2$ be a linear transformation with associated quadratic form $Q(V,W) := \langle M(V), W \rangle$. Let’s assume that M is symmetric and so Q is self-adjoint. Define $k_{\min} := \min_{\| V \|=1} Q(V,V)$ and $k_{\max} := \max_{\| V \|=1} Q(V,V)$.

Then both k_{\min} and k_{\max} are eigenvalues of M. Let V_{\min} and V_{\max} be the associated eigenvectors. Then $V_{\min} \perp V_{\max}$ and can be chosen of unit length. This holds true even when $k_{\min} = k_{\max}$; now the eigenvalues are degenerate and any orthonormal vectors will do! Next, it is the case that

$$\text{Tr}(M) = k_{\min} + k_{\max} \quad \text{and} \quad \det(M) = k_{\min} \cdot k_{\max}.$$

To actually compute these quantities, we need to choose a basis. Note that the matrix entries of M with respect to a basis E_1, E_2 are defined as the coefficients in the expansion $M(E_i) := \sum_j M_{ij} E_j$. Therefore the matrix entries satisfy $M_{ij} = \langle M(E_i), E_j \rangle = Q(E_i, E_j) = Q_{ij}$ if and only if the basis is orthonormal. In this case

$$k_{\min} + k_{\max} = Q_{11} + Q_{22} \quad \text{and} \quad k_{\min} \cdot k_{\max} = Q_{11}Q_{22} - Q_{12}^2.$$

Otherwise, let $g = \left(\begin{array}{cc} \| E_1 \|^2 & \langle E_1, E_2 \rangle \\ \langle E_1, E_2 \rangle & \| E_2 \|^2 \end{array} \right)$ and then one can show that

$$k_{\min} + k_{\max} = \sum_{ij} [g^{-1}]_{ij} Q_{ij} \quad \text{and} \quad k_{\min} \cdot k_{\max} = \frac{Q_{11}Q_{22} - Q_{12}^2}{\det(g)}.$$

2. Local “Shape” of a Surface

A nicer picture. The picture I drew on the board for explaining the relation between the second fundamental form A_p of a surface S at p and the geodesic curvature of curves on S passing through p wasn’t very good. Here is a better picture.

I’m drawing S together with a vector $X \in T_pS$ and a curve passing through p in direction X. I’ve obtained c by intersecting S with the plane passing through p spanned by X and the normal vector N_p. I’ve also drawn a circle in this plane that makes second order contact with the curve c at p. This circle has radius equal to one over the geodesic curvature $k_c(0)$; and by our formula, we also know that $k_c(0) = A_p(X,X)$.

Classification of surface points by their curvature. From your homework assignment, we know that every surface is locally the graph of a function over its tangent plane. So without loss of generality, we can analyze the second fundamental form in the following setting. Let $S := \{(x,y, f(x,y)) : (x,y) \in \mathbb{R}^2 \}$ where $f : \mathbb{R}^2 \rightarrow \mathbb{R}$ is a smooth function with $f(0,0) = 0$ and $\frac{\partial f(0,0)}{\partial x} = \frac{\partial f(0,0)}{\partial y} = 0$. You also know from your homework assignment that the tangent vectors where $E_1 = (1,0,0)^T$ and $E_2 = (0,1,0)^T$ while the second fundamental form of S there is

$$[A_0]_{ij} = -\frac{\partial^2 f(0,0)}{\partial x^i \partial x^j}$$

Moreover, we know from Taylor’s theorem that

$$f(x, y) = \frac{1}{2}(x,y)D^2f(0,0)(x,y)^\top + \mathcal{O}((\|(x,y)\|)3) = -\frac{1}{2}A_0((x,y)^\top, (x,y)^\top) + \mathcal{O}((\|(x,y)\|)3).$$

Hence if A_0 is non-zero as a quadratic form, then A_0 characterizes the local shape of S near the origin. That is, we can classify the origin as one of several different types:

- **The origin is an elliptic point** if either $k_{\min} > 0$ and $k_{\max} > 0$, or $k_{\min} < 0$ and $k_{\max} < 0$.
- **It is a hyperbolic point** if $k_{\min} < 0$ and $k_{\max} > 0$
- **It is a parabolic point** if one of $k_{\min} = 0$ or $k_{\max} = 0$.
- **It is a planar point** if $k_{\min} = k_{\max} = 0$.
- **It is an umbilic point** if $k_{\min} = k_{\max}$. The key feature here is that the principal directions are not uniquely defined.

We can see examples of each kind of point by choosing different functions $f : \mathbb{R}^2 \rightarrow \mathbb{R}$. For instance, we can get examples of the first three kinds (and the last kind) by choosing $f(x,y) = k_{\min}x^2 + k_{\max}y^2$ which is either a paraboloid (up or down) or a hyperboloid or a degenerate quadratic form depending on the signs of the principal curvatures and whether one of them is zero or not. We get an example of the fourth kind by choosing $f(x,y) = ax + by$ — in other words S is a plane.

3. Interpretations of the Mean and Gauss Curvatures

We’ll need this material for Wednesday’s lecture. The results will be stated here — and we’ll discuss the proof of these results briefly next Monday.

Mean curvature as first variation of area. Let S be an orientable surface and consider a deformation of S constructed in the following way. Choose a function $f : S \rightarrow \mathbb{R}$ and a small number $\varepsilon > 0$ and displace each $p \in S$ by an amount $\varepsilon f(p)$ in the normal direction at p. In other words $p_{\text{displaced}} := p + \varepsilon f(p)N_p$. The new surface is $S_\varepsilon := \{p_{\text{displaced}} : p \in S\}$.

Now as S deforms into S_ε, its surface area changes. We will see that

$$\left.\frac{d}{d\varepsilon}\text{Area}(S_\varepsilon)\right|_{\varepsilon = 0} = -\int_S f(p)H(p)d\text{Area}(p).$$

In other words, the first order change in the area is given by integration against the mean curvature. This also means that if $f(p) = H(p)$ then the surface area decreases the fastest. In other words, we can interpret the mean curvature as the gradient of the surface area functional.

Gauss curvature in terms of the Gauss map. This time we keep the surface S fixed and consider small balls about a point $p \in S$. where $K(p) \neq 0$. Let $\varepsilon > 0$ be such that K does not change sign in $B_\varepsilon(p)$. Then if n denotes the Gauss map, we will show that

$$K(p) = \lim_{\varepsilon \rightarrow 0} \frac{\text{Area}(n(B_\varepsilon(p)))}{\text{Area}(B_\varepsilon(p))}$$