The unit normal vector of a surface.

- The normal vector of a surface. Is this geometric?
- The normal line is geometric but the normal direction may not be. Non-orientable surfaces.
- Normal vector of a parametrized surface, graph and level set.

Surface Area.

- Setting up the Riemann sum that yields the surface area of a surface.
- Area of infinitesimal coordinate rectangle and the Riemannian area form.
- Independence of parametrization of the area integral.

The Gauss map.

- Let S be an orientable surface with unit normal vector field n_p at each $p \in S$. The Gauss map of S is the mapping $N: S \to \mathbb{S}^2$ given by $N(p) := n_p$. Here we view the unit normal vector at a given $p \in S$ as a vector in \mathbb{R}^3 of length one and thus a point in \mathbb{S}^2.
- The Gauss map of a differentiable surface is itself differentiable. Thus we can study its differential $DN_p: T_pS \to T_{n_p}\mathbb{S}^2$.
 - We can define the differential rigorously as follows. Let V_p be a tangent vector to S at p generated by a curve $c: (-\varepsilon, \varepsilon) \to S$. In other words, $c(0) = p$ and $\frac{dc}{dt} \bigg|_{t=0} = V_p$. Then $DN_p(V_p) := \frac{d}{dt}N_p(c(t)) \bigg|_{t=0}$. This is well-defined because we can show that the choice of curve doesn’t matter.
 - Note that because $N(p) \in \mathbb{S}^2$ for each p it really is the case that $DN_p(V)$ is tangent to \mathbb{S}^2 for any vector $V \in T_pS$.
 - Prove this by differentiating $\|N(c(t))\|^2 = 1$ where $c: [-1, 1] \to S$ is a curve in S.
- Some examples. Gauss map of parametrized surface, level set and graph.

Definition of the second fundamental form.

- Since T_pS and $T_{n(p)}\mathbb{S}^2$ are parallel planes (they’re both perpendicular to n_p), we can consider the differential of the Gauss map as a map $DN_p: T_pS \to T_pS$.
- Proposition: viewed in this way, DN_p is self-adjoint with respect to the Euclidean metric of \mathbb{R}^3 restricted to T_pS.
- Definition: the second fundamental form at $p \in S$ is the bilinear form $A_p: T_pS \times T_pS \to \mathbb{R}$ defined by $A_p(V, W) := -\langle DN_p(V), W \rangle$ for any $V, W \in T_pS$.
- $A_p(V, W)$ measure the projection onto W of the rate of change of N_p in the V-direction.
- Example calculations.
The second fundamental form as extrinsic curvature.

- Let \(c : [-1, 1] \to S \) be a curve in \(S \) with \(c(0) = p \). Then the geodesic curvature vector of \(c \) at zero is related to the second fundamental form at \(p \) as follows: \(\langle \vec{k}_c(0), n_p \rangle = A_p(\dot{c}(0), \dot{c}(0)) \). Note this is independent of \(\ddot{c} \) or \(c(t), \dot{c}(t) \) for \(t \neq 0 \).

- Let \(V \) vary over all unit vectors in \(T_pS \). Then \(A_p(V, V) \) takes on a minimum value \(k_{\text{min}} \) and a maximum value \(k_{\text{max}} \). These are the principal curvatures of \(S \) at \(p \) and are eigenvalues of \(A_p \). The corresponding eigenvectors \(V_{\text{min}} \) and \(V_{\text{max}} \) are the principal directions of \(A_p \). Note that \(V_{\text{min}} \) and \(V_{\text{max}} \) are orthogonal.

- Mean curvature and Gauss curvature.

Local “shape” of a surface.

- Definitions of elliptic, hyperbolic, parabolic, planar or umbilic points.

- Examples of each type.

- Local characterization of the surface \(S \) at \(p \) depending its type. Proof based on Taylor series expansion in the “right” coordinate system: a neighbourhood of \(p \) is the graph of a function over \(T_pS \).

Interpretation of the Gauss curvature in terms of the Gauss map.

- Lemma: \(K(p) > 0 \) iff Gauss map locally preserves orientation; \(K(p) < 0 \) iff Gauss map locally reverses orientation.

- Proposition: Let \(p \in S \) be such that \(K(p) \neq 0 \) and let \(\varepsilon > 0 \) be such that \(K \) does not change sign in \(B_\varepsilon(p) \). Then if \(N \) denotes the Gauss map, we have

\[
K(p) = \lim_{\varepsilon \to 0} \frac{\text{Area}(N(B_\varepsilon(p)))}{\text{Area}(B_\varepsilon(p))}
\]

Interpretation of the mean curvature as first variation of area.

- Another interpretation for the second fundamental form — at least of its trace, the mean curvature.

- The calculation.