Problem 1 (30 points).

(a) We defined the coefficients of the Riemann curvature \((3,1)\)-tensor with respect to the coordinate basis \(E_1, E_2\) by

\[\sum_s R_{ijk}^s E_s := \nabla_{E_j} \nabla_{E_i} E_k - \nabla_{E_i} \nabla_{E_j} E_k. \]

Derive the formula

\[R_{ijk}^s = \frac{\partial \Gamma_{jk}^s}{\partial x^i} - \frac{\partial \Gamma_{ik}^s}{\partial x^j} + \sum_t \Gamma_{jk}^t \Gamma_{it}^s - \sum_t \Gamma_{ik}^t \Gamma_{jt}^s. \]

(b) We defined the coefficients of the Riemann curvature \((4,0)\)-tensor by \(R_{ijk}^\ell := \sum_s g_{\ell s} R_{ijk}^s\) or equivalently by \(R_{ijk}^\ell := g(\nabla_{E_j} \nabla_{E_i} E_k - \nabla_{E_i} \nabla_{E_j} E_k, E_\ell)\). Use Gauss’ Theorema Egregium to verify the so-called symmetries of the curvature tensor:

\[R_{ijk}^\ell = -R_{jik}^\ell \quad R_{ijk}^\ell = -R_{ijk}^\ell \quad R_{ijk}^\ell = R_{kij}^\ell. \]

(c) Show that on a 2-dimensional surface, the only independent component of the Riemann curvature \((4,0)\)-tensor is \(R_{1212}\). In other words, show that all other components of \(R_m\) are either zero or a multiple of \(R_{1212}\).

(d) Use intrinsic calculations to find the Riemann curvature \((4,0)\)-tensor of the sphere. (Hints: you get to choose the parametrization of the sphere — so choose wisely; also you only need to compute \(R_{1212}\)!) (e) Find the Gauss curvature of the sphere via the second fundamental form. Compare with part (d) and verify Gauss’ Theorema Egregium.

Problem 2 (20 points). Differential geometry is all about finding good local coordinate systems for a surface \(S\) which then help prove theorems. For instance, the Gauss-Bonnet theorem uses an orthogonal parametrization. This is a parametrization \(\phi : U \subseteq \mathbb{R}^2 \to S\) with the property that \(g_{12}(x) = 0\) for all \(x \in U\). In other words, if \(E_i := \frac{\partial \phi}{\partial x^i}\) then \(\langle E_1, E_2 \rangle = 0\) at all points on \(S\) in the image of \(\phi\). (In this coordinate system, it is not necessarily the case that \(\langle E_1, E_1 \rangle = \langle E_2, E_2 \rangle = 1\). In fact, if this were to hold, then \(S\) would have a neighbourhood that is isometric to Euclidean space, which can happen if and only if the Riemann curvature tensor of \(S\) is zero inside \(U\).)

Suppose that \(\gamma : [-1, 1] \to S\) is a geodesic segment in \(S\). For every \(s \in [0,1]\), let \(N(s)\) be the unit vector in \(T_{\gamma(s)}S\) that is orthogonal to \(\gamma'(s)\). In this problem, you will prove that the mapping \(\phi(s,t) := \exp_{\gamma(s)}(tN(s))\) for \(s \in (−1,1)\) and small \(t\) is an orthogonal parametrization of a neighbourhood of \(\gamma(0)\). In fact, you will do slightly better and show that \(g_{12} = 0\) and \(g_{22} = 1\) for all \((s,t)\) in the parameter domain.
(a) Draw an informative picture. What could go wrong if \(t \) is allowed to become too large?

(b) Let \(E_1 := \frac{\partial \phi}{\partial s} \) and \(E_2 := \frac{\partial \phi}{\partial t} \). Show that \(\nabla_{E_2} E_2 = 0 \) for all \(s, t \).

(c) Show that \(\| E_2 \| = 1 \) for all \((s, t)\). (Hint: why is this true when \(s \) is arbitrary and \(t = 0 \)? Now hold \(s \) fixed and show that \(\frac{\partial}{\partial t} \| E_2 \|^2 = 0 \) for all \(t \).) Conclude that \(g_{22} = 1 \) for all \((s, t)\).

(d) Show that \(\langle E_1, E_2 \rangle = 0 \) for all \((s, t)\). (Hint: why is this true when \(s \) is arbitrary and \(t = 0 \)? Now hold \(s \) fixed and show that \(\frac{\partial}{\partial t} \langle E_1, E_2 \rangle = 0 \) for all \(t \).) Conclude that \(g_{12} = 0 \) for all \((s, t)\).

Problem 3 (20 points). The divergence theorem says that for any smooth vector field \(X \) on a surface \(S \) with boundary \(\partial S \), we have

\[
\int_S \text{div}(X) \, dA = \int_{\partial S} \langle X, N \rangle \, ds.
\]

where \(dA \) is the Riemannian area form, \(N \) is a unit vector tangent to \(S \) but normal to \(\partial S \), and we must use an arc-length parametrization for \(\partial S \) for this equation to hold. Stokes' Theorem says that for any differential \(k \)-form \(\omega \) and \((k + 1)\)-dimensional submanifold \(c \subseteq S \) we have

\[
\int_c \omega = \int_{\partial c} d \omega.
\]

In this problem, you will show that Stokes' Theorem implies the divergence theorem for a well-chosen \(\omega \). This is a straightforward problem that the unfamiliar notation of differential forms and sharp/flat/star operators may make quite difficult. Do your best!

(a) Show that \(\text{div}(X) = - * d * \langle X', \rangle \). Hint: you need to show this at an arbitrary point \(p \in S \) using your favourite coordinate system. So work in geodesic normal coordinates centered at \(p \).

(b) Explain why \(\text{div}(X) \, dA \) can be put in the form \(d \omega \) for some form \(\omega \), and what is \(\omega \)?

(c) Apply Stokes' Theorem to \(d \omega \) and \(S \) itself. We thus get \(\int_S \text{div}(X) \, dA = \int_{\partial S} \omega \). To develop the right hand side further, you must know how to evaluate the “line integral” \(\int_{\partial S} \omega \). Suppose that we can parametrize the boundary \(\partial S \) by arc-length as a curve \(\gamma : [0, \ell] \to S \) with tangent vector \(T(s) := \gamma'(s) \). Now \(\int_{\partial S} \omega \) is defined to be \(\int_0^\ell \omega(T(s)) \, ds \). Show that \(\omega(T) = \langle X, N \rangle \) where \(N \) is the vector obtained by rotating \(T \) counterclockwise by \(\pi/2 \).

Problem 4 (15 points). Recall that the Helmholtz-Hodge decomposition of a one-form \(\omega \) is given by \(\omega = \delta \beta + d \alpha + \gamma \), where \(d \gamma = 0 \) and \(\delta \gamma = 0 \). In lecture we argued that you can find the Helmholtz-Hodge decomposition in DEC by solving \(\delta d \alpha = \delta \omega \) and \(d \delta \beta = d \omega \) (and taking \(\gamma = \omega - \delta \beta - d \alpha \)).

(a) Argue that the operators \(\delta d \) and \(d \delta \) have null spaces for closed triangulated surfaces. Why isn’t this a hole in our technique?

(b) Compute \texttt{helmholtzHodge.m} implementing this technique and visualize the results using \texttt{problem4.m}. Notice that we have kindly provided \texttt{discreteExteriorCalculus.m} implementing the DEC matrices you will need.

Problem 5 (15 points). As promised, we return to the problem of geodesic computation:
(a) When does the planar front approximation made in the fast marching algorithm behave well? When does it behave poorly?

(b) In 2002, Novotni and Klein proposed using a circular wavefront rather than a planar wavefront in fast marching. For the most part, the algorithm remains the same, since it is a simple extension of Dijkstra’s algorithm for shortest paths, but the update step must be changed. Without loss of generality, we’ll embed three vertices of a triangle being updated onto the plane at positions $v_1 \equiv 0$, $v_2 \equiv (v_{2x}, 0)$, and $v_3 = (v_{3x}, v_{3y})$ with $v_{3y} \geq 0$ (make sure you understand why such an embedding is possible); we know distances d_1 and d_2 but want to find d_3.

(i) Given d_1 and d_2, write and solve a system of equations for finding the source point (x, y) of the circular wavefront.

(ii) Your system from (i) should be quadratic and thus yields two solutions. Provide a rule for choosing one of the two roots to give a single point (x, y), and give an expression for d_3.