TOPOLOGY OF POINT CLOUD DATA

CS 468 – Lecture 8
11/12/2
PROJECTS

• Writeups:
 – Introduction to Knot Theory (Giovanni De Santi)
 – Mesh Processing with Morse Theory (Niloy Mitra)

• Presentations:
 – November 27th:
 * Surface Flattening (Jie Gao)
 * Simplicial Sets (Patrick Perry)
 * Complexity of Knot Problems (Krishnaram Kenthapadi)
 – December 4th
 * Discrete Morse Theory(?) (Yichi Gu)
 * Irreducible Triangulations (Jon McAlister)
 * Homotopy in the Plane (Rachel Kolodny)
OVERVIEW

• Points
• Complexes
 – Čech
 – Rips
 – Alpha
• Filtrations
• Persistence
POINTS

- m samples $M = \{m_1, m_2, \ldots, m_m\}$ from a manifold \mathbb{M}
- Samples are embedded, but intrinsic topology is lost
- Error: acquisition device noise and approximation
POINT CLOUD DATA

(a) Surface (b) Molecule (c) Universe
• **ϵ-ball**: $B_\epsilon(x) = \{y \mid d(x, y) < \epsilon\}$.

• Open sets and topology

• Manifold is $\tilde{M} = \bigcup_{m_i \in M} B_\epsilon(m_i)$
ČECH COMPLEX

\[C_\varepsilon(M) = \left\{ \text{conv } T \mid T \subseteq M, \bigcap_{m_i \in T} B_\varepsilon(m_i) \neq \emptyset \right\}. \]

\[\sum_{k=0}^{m} \binom{m}{k} = 2^{m+1} - 1 \]

\[C_\varepsilon(M) \simeq \tilde{M} \]
RIPS COMPLEX

- $R_\epsilon(M) = \{\text{conv } T \mid T \subseteq M, d(m_i, m_j) < \epsilon, m_i, m_j \in T\}.$
- Still $O\left(\binom{m}{k}\right)$ for the kth skeleton
- Need $(k + 1)$st skeleton for computing H_k
• \(V(m_i) = \{ x \in \mathbb{R}^3 \mid d(x, m_i) \leq d(x, m_j) \forall m_j \in M \} \)

• \(\hat{V}(m_i) = B_\epsilon(m_i) \cap V(m_i) \)

• \(A_\epsilon = \left\{ \text{conv } T \mid T \subseteq M, \bigcap_{m_i \in T} \hat{V}(m_i) \neq \emptyset \right\} \)

• \(A_\epsilon(M) \simeq \tilde{M}, A_\epsilon \subseteq D, \text{ the Delaunay complex} \)

• \(O(n \log n + n^{\lceil d/2 \rceil}) \)
• Extendible to points with weights
• van der Waals model of molecules
Filtrations

- Complexes $C_\epsilon, R_\epsilon, A_\epsilon$, compute homology!
- Which ϵ? Vary and get a filtration!
- A filtration of a complex K is $\emptyset = K^0 \subseteq K^1 \subseteq \ldots \subseteq K^m = K$.
Bunny

- 34,834 points, 1,026,111 complexes
• 312 atoms, 8,591 complexes
Approach

- Input: point cloud
- Procedure:
 - Put ϵ-balls around points
 - Compute complex K_ϵ
 - Compute homology of complex
- Varying ϵ gives us a filtration
- Incremental algorithm gives homology of filtration (demo)
HOMOLOGY OF A FILTRATION

• K^l is a filtration

• $Z_k^l = Z_k(K^l)$ and $B_k^l = B_k(K^l)$ are the kth cycle and boundary group of K^l, respectively.

• The kth homology group of K^l is $H_k^l = Z_k^l/B_k^l$.

• The kth Betti number β_k^l of K^l is the rank of H_k^l.
PROBLEM

- **Features**
- **Noise**: spawned by noise, representation, etc.
PERSISTENCE

- K^l be a filtration.

- The p-persistent kth homology group of K^l is
 \[
 H^{l,p}_k = \mathbb{Z}_k^l / (B^{l+p}_k \cap \mathbb{Z}_k^l),
 \]

- The p-persistent kth Betti number $\beta^{l,p}_k$ of K^l is the rank of $H^{l,p}_k$.

- Well-defined

- $\eta^{l,p}_k : H^l_k \rightarrow H^{l+p}_k$,

- $\text{im} \ \eta^{l,p}_k \cong H^{l,p}_k$.

- This lecture: \mathbb{Z}_2 homology
Lifetimes

• Let z be a non-bounding k-cycle, created when σ enters complex at time i

• That is, β_{k++} at time i

• z creates a class of homologous cycles $[z]$

• $[z]$ is merged with the boundary class at time j when τ enters (β_{k--})

• τ destroys z and the cycle class $[z]$.

• The persistence of z, and its homology class $[z]$, is $j - i - 1$.

• σ is the creator (positive) and τ is the destroyer (negative) of $[z]$.

• If a cycle class does not have a destroyer, its persistence is ∞.
LIFETIME REGIONS

- \(H_{k}^{l,p} = Z_{k}^{l} / (B_{k}^{l+p} \cap Z_{k}^{l}) \)
- Basis element \(z + B_{k} \) lives during \([i, j)\)
- \(z \notin B_{k}^{l} \) for \(l \leq j \)
- Therefore, \(z \notin B_{k}^{l+p} \) for \(l + p < j \).
- \(p \geq 0 \)
- \(l \geq i \)
• $p \geq 0$
• $l \geq i$
• $l < j$
TRIANGLES
GRAPH OF $\log(\beta_{1, p}^l + 1)$
CMY Color Space

- Green
- Yellow (minus blue)
- Cyan (minus red)
- Black
- Red
- Blue
- Magenta (minus green)
Topology Maps
Algorithm

- Compute $\partial_k \sigma_i$
- Eliminate negative simplices in chain
- Look for youngest cycle creator and store
We can compute:

- Cycles (components, cycles, voids)
- Bounding manifolds

(Demo)

Points can be anything

- samples from high dimensional manifolds: configuration spaces for robots (PRM), time-variant data, etc.
- samples of tangent complex for data-set $\mathbb{M} \times S^2$

Need fast d-dim complex builder