Light fields and plenoptic cameras

CS 448A, Winter 2010

Marc Levoy Computer Science Department Stanford University

Outline

- scalar and vector light fields
- light field capture and rendering -parameterization
 - creation and display
 - -creation and display
 - -devices for capturing light fields
 - -sampling issues
- 3D reconstruction from light fields
- applications of light fields

The scalar light field

Radiance as a function of position and direction in a static scene with fixed illumination

L is radiance in watts / (m² steradians)

the vector light field produced by a luminous strip

- amplitude gives irradiance at that point
- direction tells which way to orient a surface for maximum brightness under the given illumination

Visualizing the vector light field

scalar irradiance at each point

flatland scene with partially opaque blockers under uniform illumination

> vector directions, visualized using line integral convolution (LIC) [Cabral 1993]

Dimensionality of the scalar light field

for general scenes
⇒ 5D function
"plenoptic function" [Adelson 1991]
L(x, y, z, θ, φ)

• in free space
⇒ 4D function
" the (scalar) light field" [Moon 1981]
L(?)

The free-space assumption

- the 3D space around a compact object
- the 3D space inside an uncluttered environment

Light field rendering

(QuickTime VR) [Chen 1995]

rebinning the rays to create new views [Levoy 1996]

Outline

- scalar and vector light fields
- light field capture and rendering
 –parameterization
 - -creation and display
 - -devices for capturing light fields
 - -sampling issues
 - 3D reconstruction from light fields
 - applications of light fields

Some candidate parameterizations

Point-on-plane + direction (or point-on-surface + direction)

K₀ Base mesh

Scanned geometry

Lumisphere

• convenient for representing the light field at a surface [Wood 2000]

Chords of a sphere

- if points on sphere are chosen at random, sampling of light field will be uniform
- useful for spherical gantries

L (
$$\theta_1, \phi_1, \theta_2, \phi_2$$
)

Two planes ("light slab")

L(u, v, s, t)

•uses projective geometry

-one plane at infinity \Rightarrow array of orthographic images

-fast incremental display algorithms

Alternative parameterization for the <u>5D</u> plenoptic function

•Two-plane ray field

- allows multiple colors, in sequence, along one line
- alternative to L (x, y, z, θ , ϕ)
- inspired by Salesin's ZZ-buffer [1990]

A light field is an array of images

...depending on where the object is relative to the two defining planes

Creating a (synthetic) light field using the 2-plane parameterization

Interpolation for display

point sample

(alldragon.lif)

Our planned light field of the Medici Chapel

What got in the way of this plan

An optically complex statue

Night (Medici Chapel)

Capturing the light field

7 light slabs, each 70cm x 70cm

each slab contained 56 x 56 images spaced 12.5mm apart

the camera was always aimed at the center of the statue

Statistics about the light field

- 392 x 56 images
- 1300 x 1000 pixels each
- 96 gigabytes (uncompressed)
- 35 hours of shooting (over 4 nights)
- also acquired a 0.29 mm 3D model of statue
- data still hasn't been calibrated and aligned!

Single image from the light field

One row of one light field slab

Other devices for capturing light fields

Stanford Spherical Gantry

- Stanford spherical gantry [Levoy 2002]
- MIT camera array [Yang 2002]
- CMU camera array [Zhang 2004]
- MSR/China concentric mosaics [Shum 2000]
- Stanford camera array [Wilburn 2005]
- Ren Ng's plenoptic camera [Ng 2005]

Handheld plenoptic camera [Ng 2005]

• array of microlenses <u>behind</u> the main lens –requires modifying the camera

Adobe light field camera [Georgeiv 2006]

• array of lenslets <u>outside</u> the main lens –each lenslet must be well-corrected

Light field microscope [Levoy 2006]

 array of microlenses behind a microscope objective –allows oblique views, refocusing, 3D reconstruction

Capturing unstructured light fields using a handheld video camera

• video camera and calibration target [Gortler 1996]

• markerless capture [Buehler 2001]

• interactive capture (Abe Davis)

Lego gantry for capturing light fields (built by Andrew Adams)

Flash-based viewer for light fields (written by Andrew Adams)

Try it yourself at http://lightfield.stanford.edu/

The Lego gantry captures a light field of itself

The BRDF kaleidoscope [Han 2003]

Photographing through mirrors

Outline

- scalar and vector light fields
- light field capture and rendering -parameterization
 - -creation and display
 - -devices for capturing light fields
 - -sampling issues
- 3D reconstruction from light fields
- applications of light fields

An omni-directional light field

- object can fill square
- observer can stand anywhere outside square

Using line space to visualize ray coverage

Using line space to visualize sampling uniformity

Disparity artifacts in light fields

- disparity depends on density of samples in the light field and range of depths in the scene
 [Levoy 1996]
- if the depth of a surface is known, a better set of rays can be extracted, reducing disparity
 [Gortler 1996]

(alldragon.lif)	(lion.lif)
0	2010.16

for a given minimum acceptable disparity (in pixels), any combination of # of images and # of depths (in bits) falling on the curve will (barely) satisfy it

 higher output image resolution requires some combination of more images or more depths (to obtain a fixed circle of confusion (in pixels))

Iso-disparity curves [Chai et al., Siggraph 2000]

48 x 48 images, no geometry

16 x 16 images, 8 depths

Outline

- scalar and vector light fields
- light field capture and rendering -parameterization
 - -creation and display
 - -devices for capturing light fields
 - -sampling issues
- 3D reconstruction from light fields
 - applications of light fields

3D reonstruction from light fields

light field

synthetic focal sequence

Transpose of the light field

Vision algorithms interpreted in line space

• flatland scene

• flatland light field (a.k.a. epipolar image) [Bolles 1987]

Line space dualities

Shape from stereo versus shape from focus

light field

• shape from stereo

• shape from focus

rectified camera images

slice of epipolar volume at scanline 119

synthetic focus sequence

slice at scanline 261

rectified camera images

synthetic focus sequence

one scanline with different focal distances, i.e. one slice from a focal stack

rectified camera images

synthetic focus sequence

one scanline with different focal distances, i.e. one slice from a focal stack

rectified camera images

synthetic focus sequence

after applying x-sharpness operator

one scanline with different focal distances, i.e. one slice from a focal stack

Which is better: stereo or focus?

• stereo

-fails on heavily occluded scenes

• focus

-fails on surfaces with linear ramp shading

• hybrid?

Outline

- scalar and vector light fields
- light field capture and rendering -parameterization
 - -creation and display
 - -devices for capturing light fields
 - -sampling issues
- 3D reconstruction from light fields
- applications of light fields

Applications of light fields

- perspective flyarounds (light field rendering)
- digital refocusing
- 3D reconstruction
- 4D texture synthesis
- light field editing
- light field morphing
- autostereoscopic display of light fields

- use color consistency constraints [Seitz 1997] to obtain voxel model
- store mapping between pixels in images and voxels in model
- for each pixel changed during editing
 - change corresponding voxel
 - change corresponding pixels in all other views

Light field morphing [Zhang et al., SIGGRAPH 2002]

UI for specifying feature polygons and their correspondences sample morph

• feature correspondences = 3D model

Autostereoscopic display of light fields [Isaksen 2000]

- image is at focal distance of lenslet \Rightarrow collimated rays
- spatial resolution $\sim \#$ of lenslets in the array
- angular resolution $\sim \#$ of pixels behind each lenslet
- each eye sees a different sets of pixels \Rightarrow stereo

Autostereoscopic display of light fields [Matusik 2004]

- 16 cameras, 16 projectors
- spatial resolution $\sim \#$ of pixels in projector
- angular resolution ~ # of projectors
- # of lenslets is unimportant

Viewer-Side

Lenticular Sheet

Diffuser

Projection-Side

Lenticular Sheet

Slide credits

- Gershun, A., "The Light Field", Moscow, 1936. Translated by P. Moon and G. Timoshenko in *Journal of Mathematics* and Physics, Vol. XVIII, MIT, 1939, pp. 51–151.
- Adelson, E.H., Bergen, J.R., "The plenoptic function and the elements of early vision," In *Computation Models of Visual Processing*, MIT Press, 1991.
- ← Moon, P., Spencer, D.E., *The Photic Field*, MIT Press, 1981.
- Chen, S.E., Williams, L., "View interpolation for image synthesis," Proc. SIGGRAPH 1995.
- Levoy, M., Hanrahan, P., "Light Field Rendering," Proc. SIGGRAPH 1996.
- Wood, D.N. et al., "Surface Light Fields for 3D Photography," Proc. SIGGRAPH 2000.
- Salesin, D., Stolfi, J., "Rendering CSG Models with a ZZ-Buffer," Proc. SIGGRAPH 1990.
- Levoy, M., Stanford Spherical Gantry, 2002, <u>http://graphics.stanford.edu/projects/gantry/</u>.
- Yang, J.C., Everett, M., Buehler, C., McMillan, L., "A Real-Time Distributed Light Field Camera," Proc. Eurographics Rendering Workshop 2002.
- * Zhang, C., Chen, T., "A Self-Reconfigurable Camera Array," Proc. Eurographics Rendering Workshop 2004.
- Shum, H., He, L.-W., "Rendering with Concentric Mosaics," Proc. SIGGRAPH 1999.
- ↔ Wilburn, B., et al., "High Performance Imaging Using Large Camera Arrays," Proc. SIGGRAPH 2005.
- Ng, R., Levoy, M., Brédif, M., Duval, G., Horowitz, M., Hanrahan, P., "Light Field Photography with a Hand-Held Plenoptic Camera," *Stanford Tech Report CTSR 2005-02*, April, 2005.

- Georgiev, T. et al., "Spatio-Angular Resolution Tradeoff in Integral Photography," Proc. Eurographics Symposium on Rendering 2006.
- Gortler, S.J., Grzeszczuk, R., Szeliski, R., Cohen, M.F., "The Lumigraph," Proc. SIGGRAPH 1996.
- Buehler, C. et al., "Unstructured Lumigraph rendering," Proc. SIGGRAPH 2001.
- Vaish, V., Wilburn, B., Joshi, N., Levoy, M., "Using Plane + Parallax for Calibrating Dense Camera Arrays," Proc. CVPR 2004.
- Levoy, M., Ng, R., Adams, A., Footer, M., Horowitz, M., "Light field microscopy," Proc. SIGGRAPH 2006.
- + Han, J.Y., Perlin, K., "Measuring Bidirectional Texture Reflectance With a Kaleidoscope," Proc. SIGGRAPH 2003.
- Bolles, R., Baker, H., Marimont, D., "Epipolar-Plane Image Analysis: An Approach to Determining Structure from Motion", *IJCV* 1(1), 1987.
- Seitz, S.M., Dyer, C.R., "Photorealistic Scene Reconstruction by Voxel Coloring," Proc. CVPR 1997.
- Seitz, S.M., Kutulakos, K.N., "Plenoptic Image Editing," Proc. ICCV 1998.
- * Zhang, Z., Wang, L., Guo, B., Shum, H.-Y., "Feature-based light field morphing," Proc. SIGGRAPH 2002.
- ← Isaksen, A., McMillan, L., Gortler, S.J., "Dynamically reparameterized light fields," Proc. SIGGRAPH 2000.
- Matusik, W. et al., "3D TV: A Scalable System for Real-Time Acquisition, Transmission, and Autostereoscopic Display of Dynamic Scenes," *Proc. SIGGRAPH 2004.*