Real-Time Graphics Architecture

Kurt Akeley
Pat Hanrahan

http://www.graphics.stanford.edu/courses/cs448a-01-fall

Rasterization

Outline
- Fundamentals
- Examples
- Special topics (Depth-buffer, cracks and holes, ...)

Required reading
- Triangle Scan Conversion using 2D Homogeneous Coordinates, Olano and Greer, EWGH 1997.
Recall that ...

Straight lines project to straight lines
- When projection is to a plane (our assumption)
- Only vertexes need to be transformed
- That’s why we’re interested in lines and polygons

Projected distance is warped:

Recall that ...

Ideal screen coordinates are continuous
- Implementations always use discrete math, but with substantial sub-pixel precision
- A pixel is a big thing
 - Addressable resolution equal to pixels on screen
 - Lots of data (recall over-square RealityEngine buffer)

Points and lines have no geometric area
Terminology

Rasterization: convert primitives to fragments
- Primitive: point, line, polygon, glyph, image,
- Fragment: transient data structure, e.g.

  ```
  short x, y;
  long depth;
  short r, g, b, a;
  ```

Pixels exist in an array (e.g. framebuffer)
- Have implicit <x,y> coordinates

Fragments are routed to appropriate pixels
- First “sort” we’ve seen
- There will be more

Two fundamental operations

Fragment selection
- Identify pixels for which fragments are to be generated
- Must be conservative, efficiency matters
- <x,y> parameters are special

Parameter assignment
- Assign parameter values to each fragment
- E.g. color, depth, ...
Fragment selection

Generate one fragment for each pixel that is intersected by the primitive.

Intersected could mean primitive’s area intersects:
- The square pixel region, or
- The pixel’s filter function, or
- The pixel’s center point

All three meanings are useful:
- Box sample: tiled rasterization
- Filter function: antialiased rasterization
- Point sample: standard aliased rasterization

Fragment selection (continued)

What if the primitive doesn’t have an area? (Points and lines don’t.)
- Rule-based approach (e.g. Bresenham line), or
 - Allows desired properties to be maintained, but
 - May require additional hardware complexity
- Assign an area (e.g. circle for point, rectangle for line)
 - Can utilize polygon rasterization algorithm, but
 - May result in wavy lines, flashing points, etc.

Note: point sample and box sample differ
- Cannot simply scale the primitive
Parameter assignment

Identify a parameter function (height-above-plane)
Sample this function as required
Which function?
- Lots of possibilities (that we will ignore)
- Always defined implicitly by vertex values
 - Linear in either screen or object space
Properties of vertex-defined function:
- Zero-order continuity
- Triangles allow the surface to be a plane
- Polygons (4+ edges) are almost never planar
 - Variant with screen orientation?

Linear interpolation

Compute intermediate parameter value
- Along a line: \(P = aP_1 + bP_2, \quad a+b=1 \)
- On a plane: \(P = aP_1 + bP_2 + cP_3, \quad a+b+c=1 \)

Only projected values interpolate linearly in screen space (straight lines project to straight lines)
- \(x \) and \(y \) are projected (divided by \(w \))
- Parameter values are not naturally projected

Choice for parameter interpolation in screen space
- Interpolate unprojected values
 - Cheap and easy to do, but
 - Gives wrong values (sometimes OK for color, though)
 - Texture coordinates can’t be interpolated this way
- Do it right (next slides)
Projection to straight lines

Interpolate, then project = project, then interpolate
Perspective-correct linear interpolation

Linearly interpolate P/w and $1/w$
- Both are projected, so project to straight lines
- \((\text{Interpolate} \rightarrow \text{project} = \text{project} \rightarrow \text{interpolate})\)

At the desired sample point
- Recover P by dividing P/w by $1/w$
- Division is expensive, so
 - Recover w for the sample point (reciprocate), and
 - Multiply each projected parameter value by w

$$
P = \frac{aP_1/w_1 + bP_2/w_2 + cP_3/w_3}{a/w_1 + b/w_2 + c/w_3} \quad a + b + c = 1
$$

Example: Gouraud shaded quadrilateral

Fragment selection
- Walk edges
- Change at vertexes

Parameter assignment
- Two-stage
 - Interpolate along edges
 - Interpolate edge-to-edge
- Three distinct regions
 - Loop is complex
 - E.g. 2/3 regions
- Function of
 - Screen orientation
 - Choice of \(\leftrightarrow\) spans
Example: Gouraud shaded quadrilateral

“All” projected quadrilaterals are non-planar
- Due to discrete coordinate precision

What if quadrilateral is concave?
- Concave is complex (split spans -- see example)
- Non-planar \rightarrow concave for some view

What if quadrilateral intersects itself?
- A real mess (no vertex to signal change -- see example)
- Non-planar \rightarrow “bowtie” for some view

All polygons are triangles (or should be)

Three points define a plane
- Can treat all triangles as planar
- Can treat all parameter surfaces as planar

Triangle is always convex
- Regardless of arithmetic precision
- Simple rasterization, no special cases

Modern GPUs decompose n-gons to triangles
- SGI switched in 1990, VGX product
- Optimal quadrilateral decomposition invented
Normal-based quad decomposition

Compute \((A \cdot C)\) and \((B \cdot D)\)

Connect vertex pair with the greater dot product
- Avoid connecting the stirrups

Must avoid frame-to-frame jitter
- Cannot transform normals, or
- Planar quads will jitter

Point sampled triangles

Modern choice for aliased rendering

Fragment selection
- Include if center point is inside
- Handle edge/vertex intersections

Parameter assignment
- Sample function at pixel center
- Mean value for surrounded pixels
- Consistent ray for depth buffer

Never sample outside the triangle
- Avoid color wrap
- But how is antialiased filtering handled?
Point sampled points and lines

Points and lines have no area, so
- Pixel sample locations almost never “in” primitive
- Semantics are confused at best

Must assign “area” parameter functions
- Point: parameter-constant disk
- Line: single-parameter-slope rectangle

Problem: how to outline filled, depth-buffered triangles?
- Depth values are “wrong”, lines disappear
- VGX introduced “hollow polygons”
- OpenGL 1.1 introduced glPolygonOffset()

Integer DDA arithmetic

Goal: efficient interpolation
Direct evaluation is expensive
- Requires multiplications for each evaluation

Digital Differential Analyzer (DDA)
- Fixed point $i\cdots i, f\cdots f$ representation, accumulator and slope
- Add slope repeatedly to accumulator to evaluate adjacent sample locations
- Planar DDA uses separate X and Y slopes
 - Can move around the plane arbitrarily
- Require $\log_2(n)$ fraction bits for n accumulation steps
Triangle Rasterization Examples

Gouraud shaded (GTX)
Per-pixel evaluation (Pixel Planes 4)
Edge walk, planar parameter (VGX)
Barycentric direct evaluation (InfiniteReality)
Small tiles (Bali - proposed)
Homogeneous recursive descent (NVIDIA)

Algorithm properties

Setup and execution cost
- Absolute
- Relative

Ability to parallelize

Ability to cull to a rectangular screen region
- To support tiling
- To support “scissoring”
Gouraud shaded (GTX)

Two stage algorithm
- DDA edge walk
 - fragment selection
 - parameter assignment
- DDA scan-line walk
 - parameter assignment only
Requires expensive scan-line setup
- Location of first sample is non-unit distance from edge
Parallelizes in two stages (e.g. GTX)
Cannot scissor efficiently
Works on quadrilaterals

Engine-per-pixel (Pixel Planes 4)

Sorry, no diagram 😞
Individual engine at each pixel
- Solves edge equations to determine inclusion
- Solves parameter equations to determine values
Setup involves computation of plane and edge slopes
Execution is
- Extremely fast (all pixels in parallel)
- Extremely inefficient for small triangles
 - Pixel depth complexity = # triangles in scene
 - Scissor culling is a non-issue
Hybrid algorithm

- Edge DDA walk for fragment selection
 - Efficient generation of conservative fragment set
- Sample DDA walk for parameter assignment
 - Never step off sample grid, so
 - Never have to make sub-pixel adjustment

Scissor cull possible

- Adds complexity to edge walk

Sample walk simplifies parallelism
Interpolation outside the triangle

DDA can operate out-of-range

- MSBs beyond desired range don’t matter
 - Carry chain flows up, not down
 - Can handle arbitrarily large slopes
 - Can iterate outside the triangle’s area

Don’t clamp intermediate results!

Doesn’t work for floating point!
Guard bits

Problem: overflow or underflow of accumulated value
- Integer arithmetic “wraps”
 - Maximum value overflows to zero
 - Zero underflows to maximum value
- Minor accumulation error → huge value error

Use guard bit(s) to avoid wrapping
- Maintain one or more extra MSBs throughout
- Split guard range equally above and below

Guard bits (continued)

<table>
<thead>
<tr>
<th>"value"</th>
<th>Guard Bit</th>
<th>Integer part</th>
<th>Clamped</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>1</td>
<td>01</td>
<td>3 (11)</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>00</td>
<td>3 (11)</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>11</td>
<td>3 (11)</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>10</td>
<td>2 (10)</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>01</td>
<td>1 (01)</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>00</td>
<td>0 (00)</td>
</tr>
<tr>
<td>-1 (6)</td>
<td>1</td>
<td>11</td>
<td>0 (00)</td>
</tr>
<tr>
<td>-2 (7)</td>
<td>1</td>
<td>10</td>
<td>0 (00)</td>
</tr>
</tbody>
</table>

if (guard bit is ‘0’)
 return value;
else if (MSB of value is ‘1’)
 return 0;
else
 return maximum value;

CS448 Lecture 6 Kurt Akeley, Pat Hanrahan, Fall 2001
DDA bit assignment examples

Edge equation in 4k x 4k rendering space
- 1 guard bit
- 12 integer bits (4k space)
- 10 sub-pixel position bits
- 12 interpolation bits (\(\log_2(4096)\))
- 35 bits total

Depth value in 4k x 4k rendering space
- 2 guard bits (depth wrap is disaster)
- 24 integer bits (reasonable depth precision)
- 13 interpolation bits (longest path in 4k x 4k)
- 39 bits total

Barycentric (InfiniteReality)

Hybrid algorithm
- Approximate edge walk for fragment selection
 - Pineda edge functions used to generate AA masks
- Direct barycentric evaluation for parameter assignment
 - Barycentric coordinates are DDA walked on grid
 - Minimizes setup cost
 - Additional computational complexity accepted
 - Handles small triangles well

Scissor cull implemented
- Supports “guard band clipping”
Small tiles (Bali - proposed)

Framebuffer tiled into $n \times n$ (16x16) regions

- Each tile is owned by a separate engine

Two separate rasterizations

- Tile selection (avoid broadcast, conservative)
- Fragment selection and parameter assignment

Parallelizes well

Handles small triangles well

Scissors well

- At tile selection stage

Homogeneous recursive descent

Rasterizes unprojected, unclipped geometry

- Huge improvement for geometry processing!
- Interpolates clip-plane distances

Modern choice for GPUs

- But is not well documented
- Read Olano and Greer
 - Parameter assignment precision has many pitfalls
 - Watch out for infinities!

Recursive descent

- Scissors well
- Drives $n \times n$ (2x2) parallel fragment generation

Cannot generate perspective-incorrect parameter values
Ideal depth buffer

Topic is fractal

- What is good metric for accuracy?

"Ideal" depth buffer (true object-Z buffer)

- Interpolate Z/w and $1/w$
- Divide at each fragment to recover object Z value
- Expensive division arithmetic (Z has lots of bits)
- Precision is distributed evenly in Z buffer
 - Seems desirable, but actually is not
 - More precision nearer the viewpoint is good
- SGI "Odyssey" product is only example I know

1/w depth buffer (aka W-buffer)

Observe that w is just object Z to begin with
Recall that $1/w$ interpolates linearly
Store and compare $1/w$ values in depth buffer
No expensive division is required
No additional interpolation, $1/w$ was needed anyway
W-buffer precision is packed toward the view point

- Derivative of $1/w$ is $-1/w^2$
- Some warp is desired, but this is extreme
- Precision between view point and near-clip is lost
 - $1/w$ value is scaled to match far-clip, but not biased

Becoming commonly used
Z/w depth buffer (aka Z-buffer)

Z/w interpolates linearly too
Store and compare Z/w values in depth value
No expensive division required
Depth buffer precision is packed toward the near clipping plane (not view point)
 ■ Similar warp to W-buffer
 ■ Lose farclip/nearclip bits in far field
 ■ All precision available near-clip to far-clip
OpenGL/SGI standard approach
 ■ See OpenGL spec for details

Depth buffer warp compensation

Use floating point representation for depth values
May convert to float after interpolation if desired
To compensate for warp in W-buffer or Z-buffer
 ■ Set far to 0.0, near to maximum value
 ■ InfiniteReality product does this (Z-buffer)
To compensate for warp in object-Z buffer
 ■ Set far to maximum value, near to 0.0
 ■ Odyssey product does this
Depth buffer \(x,y \) precision

Depth parameter “surface” is constructed from vertex values, not from first principles

- Discretized \(x,y \) move this surface substantially
- Could compute depth plane with high-precision \(x,y \), but
- This path leads to sampling outside the triangle

A 32-bit depth buffer in a system with 2-bit subpixel precision makes no sense!

Holes and cracks

Assume point sampled triangles

Goal for adjacent triangles:

- No missed pixels (holes)
- No pixels rasterized twice

Problem: sample point intersects the edge

- Use canonical edge arithmetic (identical for both triangles)
- Swap only the sense of the decision

Problem: sample point intersects shared vertex

- Construct elaborate rasterization rules, or
- Use separate grids for vertexes and samples
Holes and cracks (continued)

T-vertex
- A vertex intended to be "on" an edge
- Results in cracks (see example)

Cannot eliminate problem
- Would require infinite precision
- Antialiasing helps, though

See Pat Hanrahan’s cs248 slides
- graphics.stanford.edu/courses/cs248-98-fall/Lectures/lecture9/

Final observations

To get consistent precision using floating point
- Add a bias equal to maximum value
- Forces all exponents to be the same
- Can subtract or lose in float-to-fixed conversion

Round-to-zero is evil for signed rasterization algorithms
- Especially important for floor() and ceiling()
- Or avoid with bias technique

Some horrible problems go away in the limit
- Huge parameter slope → little triangle area
Final observations (continued)

Highly-acute triangles
- Result from high-precision screen coordinates
- Can rasterize incorrectly due to minor slope errors
- Develop very large parameter slopes

Sometimes excess precision is damaging
- Screen coordinates → acute triangles
 - Olano and Greer describe this
- But, screen coordinates → depth buffer accuracy

Line stipple is a mess
- For one segment, complicates raster parallelism
- For connected segments, complicates geometry parallelism

Real-Time Graphics Architecture

Kurt Akeley
Pat Hanrahan

http://www.graphics.stanford.edu/courses/cs448a-01-fall