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Display and Framebuffer


Displays


� Key properties


� Bandwidth


Framebuffers


� Definitions and key properties


� Bandwidth


� Architecture


Required reading


� Frame-Buffer Display Architectures, Sproull, 
Annual Review of Computer Science, ‘86
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Terminology


CRT


� Cathode Ray Tube


LCD


� Liquid Crystal Display (flat panel)


DLP


� Digital Light Processing


� Texas Instruments technology


� Clever adaptation of IC / photo lithography
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Raster vs. Calligraphic


Raster (image order)


� dominant choice


Calligraphic (object order)


� Earliest choice (Sketchpad)


� E&S terminals in the 70s and 80s


� Works with light pens


� Scene complexity affects frame rate


� Monitors are expensive


� Still required for FAA simulation


� Increases absolute brightness of light points
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Display Sequence Issues


Raster video signal takes a full frame to deliver


� Adds almost one frame of latency (worst-case)


Persistence


� Flying dot: CRT, scanning Laser


� Skewed full-frame: LCD panel, DLP ?


� Field sequential: consumer DLP, head-mount CRT


Visual artifacts


� Tearing in tiled displays


� Color separation in field sequential displays


� Motion blur of moving objects?
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Display Sequence Issues (Cont.)


Interlace (vs. progressive)


� Two interlaced fields per frame


� Makes no sense for MPEG compression


� Included in HDTV spec!


Visual artifacts


� Flicker if image is poorly filtered


� Image doubling if render rate <= frame rate


� Disappearing objects
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Display Resolution History


Rate of increase is low (1.1 compound overall)


LCD display has peak foveal pixel density at 3-feet


1.21.55 GB3840 x 2400 x 56Hz, active LCD2001


1.10.60 GB1920 x 1080 x 72Hz, HD CRT1996


1.10.29 GB1280 x 1024 x 72Hz, CRT1988


0.14 GB1024 x 768 x 60Hz, CRT1980


RateBandwidthFormat and TechnologyDate


All figures are the author’s estimates!
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IBM’s Bertha LCD Display


3840 x 2400 resolution,  22” diagonal 16:10 screen
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Video Signal Generation


Implemented on GPU


Analog and digital streams


� Analog: complex waveform, critical timing


� Digital: emerging standards and capabilities


Typically supported:


� Gamma correction


� Different resolution displays


Optionally supported:


� Multiple signals / displays


� Genlock synchronization
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Display Summary


RGB raster displays are prevalent


� Calligraphics as a pedagogical tool


� Ignore 3D displays


Video bandwidth


� Is a steady load on an operating GPU


� Is increasing slowly
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Framebuffer Definitions


What is a framebuffer?


What can we learn by considering different definitions?
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Framebuffer Definition #1


Storage for commands that are executed to refresh the 
display


Allows for raster or calligraphic display (e.g. Megatech)


“Framebuffer” for calligraphic display is a “display list”


� OpenGL “render list”?


Key point: framebuffer contents are interpreted


� Color mapping


� Image scaling, warping


� Window system (overlay, separate windows, …)


� Address Recalculation Pipeline
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Framebuffer Definition #2


Image memory used to decouple the render frame rate 
from the display frame rate


Meets common understanding of framebuffer as image


Leads naturally to double buffering


� One render buffer, one display buffer, swap


� n-buffering also possible, can control latency


Key idea: decoupling enables general-purpose GPU


� Visual simulation has high render frame rate


� MCAD has low render frame rate


� Window manager has no frame rate
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Framebuffer Definition #3


All pixel-assigned memory used to assemble and display the images 
being rendered


Key point: framebuffer is active participant in rendering


Leads to non-color buffers: depth, stencil, window control


� OpenGL treats these buffers as part of framebuffer


� Some reserve “framebuffer” for color images


� Should be n-buffered in some cases (sort last)


� RealityEngine framebuffer can be deeper than wide or high


History cycles through this definition


� 2D manipulation


� 3D painters algorithm


� 3D depth, stencil, accumulation, multi-pass


� Programmable shading
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Framebuffer is Optional


Calligraphic display


� If we don’t treat display list as framebuffer


“Follow-the-beam” rendering


� Minimizes latency


� Saves cost if frames are never “dropped”


Talisman-like image assembly (3D sprites)


� Old idea (visual simulation, window systems)


GigaPixel render tile


� Framebuffer stores color images only


� Depth, stencil, etc. in small tile
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Dominant Architecture is Consistent


SGI architectures look like


ATI architectures look like


NVIDIA architectures


Details are evolving, but big picture remains the same


Why is this?


� Simplicity of design


� Simplicity of algorithms


� Simplicity of immediate-mode approach
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Simplicity of Design


Framebuffer fragment operations


� Blending: merge fragment and pixel color


� Depth Buffering: save nearest fragment


� Stencil Buffering: simple pixel state machine


� Accumulation Buffering: high-resolution color arithmetic


� Antialiasing: (to be covered later)


� ….


Key points:


� All utilize pixel data (not just fragment data)


� All are pixel independent (no neighbor data dependencies)


Why aren’t fragment operations programmable?
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Simplicity of Algorithms


Framebuffer employs brute-force simplicity


� Hidden surface elimination: Depth-buffer vs. sort/painter


� Capping: Stencil-based vs. object calculations


� Image-space algorithm is efficient


� Just samples, never “object” information, locality


� Just-in-time calculation, steady cost function


Accumulation Buffer (high-resolution color arithmetic)


� The Accumulation Buffer, Haeberli and Akeley, 
Proceedings of SIGGRAPH ‘90


� Volume rendering using 3D textures


Multi-pass rendering


� Interactive Multi-pass Programmable Shading, Peercy, 
Olano, Airey, and Ungar, Proceedings of SIGGRAPH ‘00
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Simplicity of Immediate-mode


Framebuffer is “context”


Matches 2D/window rendering model


Rendering


System


Most graphics 
state is in 
framebuffer


Little graphics 
state is in 
rendering hdwr
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Decreasing Display Bandwidth


Historically display bandwidth was a limiting factor


� Hence “Sproull’s Rule”: fill rate >= display rate


Now display bandwidth is almost inconsequential


1/5(1/20)**1.55GB8.0GB2001


1/200.60GB12.8GB1996


1/6 *0.29GB1.8GB1988


1/20.14GB0.3GB1984


Disp / FBDisp BwthFB BwthYear


*  VRAM provided separate video bandwidth


** Display requires four separate video signals
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Maximize Effective Bandwidth


Display bandwidth is inconsequential, but


Framebuffer bandwidth is still critical, so


� Optimize access locality


� Utilize special purpose memory parts


� Maximize real bandwidth


� Embed framebuffer memory


� Minimize bandwidth needs


� Utilize parallelism


� Pool framebuffer memory


Consider these in more detail ….
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Optimize Access Locality


DRAMs run faster when “local” accesses are back-to-
back


Imagine that you have a “locality budget”


Allocate it carefully to


� Optimize for display refresh cycles, and/or


� Scan line locality


� Optimize for triangle fill cycles, and/or


� Square “tile” of locality


� Optimize for overlay display cycles, and/or


� Pixel component locality


� ….
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Utilize Special Purpose DRAM


Video DRAM (VRAM) in ‘80s


� Popular for a short period.  E.g. SGI GTX.


Sun 3DRAM in the ’90s


� Constrains the architecture


� Pixel format, fragment operations, etc.


� Expensive


Standard DRAMs have evolved for framebuffer use


� Time-to-fill limits utility of narrow-deep DRAMs


� Wide-shallow parts result (current 32-bit 
DDRRAM)


� Will DRAMs fall behind?  Have they already?
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FBRAM


FBRAM is DRAM with video 
output buffers (as in VRAM) and 
a cached ALU to perform 
fragment operations.


This was not a successful 
product.


FBRAM: A New Form of Memory 
Optimized for 3D Graphics,
Deering, Schlapp, and Lavelle, 
SIGGRAPH ’94 Proceedings
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Maximize Framebuffer Bandwidth


Use the fastest, widest DRAMs possible


Operate them at the highest possible clock rate


� Separate “pixel” clock and “memory” clock


� Bin memory (and GPU) parts


� Provide elasticity (FIFO) and synchronization


Make all wiring point-to-point


� Optimize signal paths


� Separate memory controller for each DRAM
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GTX Block Diagram


Each of the 20 Image Engines 
was conceived as little more 
than a stand-alone memory 
controller with attached VRAM.


High-Performance Polygon 
Rendering, Akeley and 
Jermoluk, Proceedings of 
SIGGRAPH ’88.
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Embed Framebuffer Memory


Examples


� Pixel Planes (earlier versions)


� Play Station 2


May be the ultimate answer


� When framebuffer memory is inconsequential


But


� It’s expensive compared with commodity DRAM


� NVIDIA and ATI have done well without it
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Minimize Bandwidth Requirements


Add transistors to make better use of bandwidth


Be frugal, make each memory cycle count


� Aggregate memory transactions


� Cache to get efficient use of memory bandwidth


Compress framebuffer data


� Utilize area redundancy


Optimize occlusion culling


� Backface, early depth test, hierarchical depth


Minimize need for multi-pass rendering


� Programmable shading
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SGI Historicals – FB Bandwidth


1.42.2


1.212.8GB?1.31000MInfiniteReality1996


1.46.4GB1.8380MRealityEngine1992


1.61.8GB4.540MGTX1988


-0.3GB-100KIris 20001984


Yr rateFB BwthYr rateZbuf rateProductYear


DRAM*


Bandwidth increases at 1.4, pixel fill rate at 2.2


VRAM**


DRAM


SDRAM


*  Physically separate front and back color buffers


** Not counting shift output bandwidth
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NVIDIA Historicals – FB Bandwidth


Bandwidth increases at 1.5, pixel fill rate at 2.5


1.52.5


1.08.0GB4.0500MNV201H01


1.38.0GB1.6250MNV162H00


2.66.4GB2.6200MGeForce21H00


1.94.0GB2.6120MGeForce2H99


2.12.9GB2.375MTNT21H99


1.62.0GB2.650MRiva TNT2H98


1.01.6GB2.431MRiva ZX1H98


-1.6GB-20MRiva 1282H97


Yr rateFB bwthYr rateFill rateProductSeason
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Rent’s Rule 


Rent’s rule:


Bandwidth = KR Capability 0.7


NV series exponent is 0.5 (against 0.46 expected)


NV20 does:


� Transaction aggregation


� Clever depth buffer fragment elimination


� Lossless data compression


� ….
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Utilize Parallelism


Single-Instruction, Multiple-Data Parallelism (SIMD)


� Usually tiled rendering stamp (e.g. Stellar)


� Efficiency poor due to “pixel depth complexity”


Multiple-Instruction, Multiple-Data Parallelism (MIMD)


� Fragment operations are independent


� Individual memory controllers are more efficient


� SGI approach, merge them into Image Engines


� Became massively parallel (hundreds of engines)


� NVIDIA approach also?


� Parallelism limited to 4 or so, more pipelining
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InfiniteReality Block Diagram


Fully-configured InfiniteReality 
system includes 320 Image 
Engines.  Each combines a 
fragment processor with a 
memory controller.


Image Engines are packaged in 
groups of four.


InfiniteReality: A Real-Time 
Graphics System, Montrym, 
Baum, Dignam, and Migdal, 
Proceedings of SIGGRAPH ’97.
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Pool Framebuffer Memory


Single shared memory for all GPU needs


� Framebuffer, texture, “display list”


� Standard GPU solution (including SGI desktop)


Can share CPU memory too


� “System company” solution


� Lots of issues (latency, error correction, locality)


� SGI O2


Automatically balances bandwidth needs


Addresses time-to-fill issue nicely


Requires crossbar for multiple memory controllers
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Other Issues


Coordinate system


� Pixel is a region, not a point sample


� Pixels have integer coordinates, but


� Screen/window coordinates are continuous


Error detection/correction


� No SGI framebuffer has this (even O2)


� Do others?


Why not map framebuffer into CPU address space?


� Lots of reasons


� DrawPixels/ReadPixels is the right interface
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Conclusion


Elegant brute-force is working


� Complexity is localized


� Architecture remains unchanged


More transistors buy lower bandwidth needs


� CPU designers add cache memory


� GPU designers have lots of tools
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