Real-Time Graphics Architecture

Kurt Akeley
Pat Hanrahan

http://www.graphics.stanford.edu/courses/cs448a-01-fall

Nuts and Bolts

Some hardware background
Nuts and Bolts

Fundamentals
- Circuit elements
- Elements of logic and computer architecture
- Integrated circuits, esp. DRAM

Motivate further investigation
- *Digital Systems Engineering*, Dally and Poulton
- *DRAM Design Overview*, Jinji Ogawa, 1998
- *Computer Architecture*, Hennessy and Patterson?

We’ll omit the very gory details
- I don’t know them anyway

Basic Elements of Circuits

Transistors
- You hear about these all the time

Wires
- You hear much less about these

Others
- E.g. resistors, capacitors, inductors, diodes,
- These are statistically uncommon
- They are *properties* of transistors and wires
Electrical Properties

Voltage \((v) \)
- Electrical pressure

Current \((i) \)
- Flow of electrical charge

Resistance \((R) \)
- Dissipates power when current is flowing

\[v = iR \quad (\text{Ohm's Law}) \]

\[\text{Power} = vi = i^2 R = v^2 / R \]

More Electrical Properties

Resistance \((R) \)
- Dissipates power when current is flowing

Capacitance \((C) \)
- Stores charge, resists change in voltage

Inductance \((L) \)
- Resists change in current
Wires are Interesting

Transistors get the attention, but wires make a design
Signals *propagate* along wires
- Wires are not perfect conductors
- They have resistance, capacitance, & inductance

Signal propagation:
- Takes time (2ns per foot)
- Consumes energy (charging C through R)
- Generates emissions (L, noise)
- Is affected by emissions (interference, cross talk)
- Is affected by changes in *impedance* (LC)
Wires are Interesting (continued)

Wires consume resources
- On the die (of an integrated circuit chip)
- On the chip (its pins)
- On the circuit board (traces, connectors)

Transistors

Transistors amplify signals
- Transistor is an active gain element
- Without gain, no useful circuit is possible

Transistors invert signals
- Gain can be arranged to be negative
- Without inversion, no useful logic circuit is possible

Transistors are analog devices
- They are not perfect switches
- They have resistance, capacitance, & inductance
Transistors (continued)

Switching a transistor:
- Takes time (now measured in ps)
- Dissipates energy (charging \(C \) through \(R \))
- Generates minimal emissions (\(L \), noise)
- Is slightly affected by emissions (\(L \), interference)

Transistors consume resources
- On the die
- (But wires sometimes dominate)

Summary - Circuit Elements

Good digital designers are adequate analog designers
- Respect the properties of transistors and wires

Who ever heard of “wire count”?
- Wires are critical to IC and system design
- Wires can make or break an architecture
Integrated Circuits

Multum in Parvo (MIPchip ;-)
- Much in a little place
- Exponentially more over time (Moore’s Law)

Enabled by photo lithography
- Opto-chemical vector processing
- Operates at wafer (not die) scale

Yield determines economics
- Measured in operating die per wafer
- Larger die → fewer candidates
- More circuitry per die → higher failure rate

Integrated Circuits (continued)

Pins are big and slow
- Wires are bonded to pads, usually on edge of die
- *Pad limited* → circuitry doesn’t fill the die

Prioritized design limiting factors:
1. Complexity management
2. Power dissipation
3. Off-die wiring
4. On-die wiring
5. Available transistors
Families of Integrated Circuits

Was once a rich field:

- RTL → DTL → TTL → STTL → FTTL
- ECL
- Gallium Arsenide

The war is nearly over - CMOS is cleaning up

Exceptions are few:

- DRAM memory
- CCD image arrays (but CMOS is closing here too)
- Bipolar (FTTL, ECL) in high-end products
- Vacuum tubes (transmission towers)

CMOS Technology

Complementary Metal Oxide Silicon (CMOS)

MOS Transistor (a.k.a. Field Effect Transistor)

- Metal gate is Oxide-insulated from Silicon channel
- Oxide insulator has near infinite resistance
 - No DC current flow at gate (unlike bi-polar)
- Switches very nearly on or off

Complementary

- Two types of MOS transistors
 - P-channel - on when gate is low voltage
 - N-channel - on when gate is high voltage
CMOS Inverter Circuit

No DC current flow
- No gate current (MOS transistors)
- No path from ground to power

Dissipates power only during transitions

Categories of Integrated Circuits

Fixed purpose (off-the-shelf)
- Memory (SRAM, DRAM, ...)
- Microprocessor, DSP, GPU
- Special purpose (DAC, voltage regulator, ...)

Programmable
- Field Programmable Logic Array (FPLA)
- Amazingly capable

Custom
- Effort ranges from large to extraordinary
- (Expensive) software design tools are a must
Scaling of IC Technology

Purely exponential for 30+ years
Should continue at least through 2010
- Perhaps much longer
- Perhaps forever? (The Age of Spiritual Machines, Ray Kurzweil, 1999)

```
Log(good)  Log(bad)
  time     time
```

Semiconductor Scaling Rates

From: Digital Systems Engineering, Dally and Poulton

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Current Value</th>
<th>Yearly Factor</th>
<th>Years to Double (Half)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moore’s Law (grids on a die)**</td>
<td>1 B</td>
<td>1.49</td>
<td>1.75</td>
</tr>
<tr>
<td>Gate Delay</td>
<td>150 pS</td>
<td>0.87</td>
<td>(5)</td>
</tr>
<tr>
<td>Capability (grids / gate delay)</td>
<td></td>
<td>1.71</td>
<td>1.3</td>
</tr>
<tr>
<td>Device-length wire delay</td>
<td></td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>Die-length wire delay / gate delay</td>
<td></td>
<td>1.71</td>
<td>1.3</td>
</tr>
<tr>
<td>Pins per package</td>
<td>750</td>
<td>1.11</td>
<td>7</td>
</tr>
<tr>
<td>Aggregate off-chip bandwidth</td>
<td></td>
<td>1.28</td>
<td>3</td>
</tr>
</tbody>
</table>

** Ignores multi-layer metal, 8-layers in 2001
Elements of Logic

(Recall that transistors and wires are circuit elements)

Gates
- Combinational logic (e.g. AND, NAND, NOR)
- Transistors and wires

Registers
- Sample and store state bits at clock events
- Transistors and wires

Signals
- Connect gates and registers
- Transistors and wires

Elements of Computer Architecture

State machines
- Gates, registers, and signals
- Examples: FPU, memory controller

Memory
- Gates, registers, and signals
- Examples: DRAM, SRAM, on-die cache memory

Communication (data movement)
- Gates, registers, and signals

Communication (data where needed when needed)
- Gates, registers (memory), and signals
State Machines

Synchronous logic
- Single clock signal distributed through region
- This is the die-length wire!
- Asynchronous design option never achieved

Performance determined by maximum delay path
- Measured in gates
- Signal delays matter too (especially the clock)

Random Access Memory (RAM)

Ideal: addressed array of registers
- Read: present address, contents are output
- Write: present address and data, strobe
- Random \(\rightarrow \) equal access to all locations

Non-random technologies
- Cyclical: Delay lines, shift registers, disks, drums
- Hierarchical: cache

IC technology has bifurcated:
- Static RAM (SRAM) - much like ideal
- Dynamic RAM (DRAM) - *not* ideal
DRAM Fundamentals

Highest RAM density
- Smallest memory cell
- Used for all “large” memories

Highest RAM complexity
- Driven by density goal
- DRAM is “high-maintenance” memory

Different process technology
- Difficult to provide on CMOS logic die

Commodity business
- Everyone playing the “value add” game

DRAM Fundamentals (continued)

Cell is as small as possible
- One transistor, one capacitor (real)
- Inherently Dynamic
 - No gain element in cell
 - Requires refresh to maintain state reliably
- Inherently slow
 - Minimal bit energy, huge amplification required

SRAM cell

DRAM cell
DRAM Fundamentals (continued)

Memory array is 2D structure

- Row and column addresses presented sequentially
- Row "locality" can be exploited

![Diagram of DRAM array]

Slide courtesy of Mark Horowitz, from Junji Ogawa 1998 presentation
DRAM Fundamentals (continued)

Complex state machine
- Multiple active rows
- Split read/write
- Automatic/hidden refresh cycles

Complex interface
- Multiplexed row/column addresses
- Strobe signals (not clocked)
- Hundreds of timing parameters
- Required external memory controller is a complex state machine

Speed Gap between DRAM and CPU
- Memory Wall -

Slide courtesy of Mark Horowitz, from Junji Ogawa 1998 presentation
Signaling and Communication

Bus
- Multi-conductor signal
- Historically multi-drop (like PCI?)

High-speed signaling requires
- Point-to-point wiring
- Proper termination
- Clever attention to detail
 - (see Dally and Poulton, the whole book)

Example Gate Counts

<table>
<thead>
<tr>
<th>Circuit Description</th>
<th>Gates</th>
<th>Growth</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-bit register file (1 read, 1 write)**</td>
<td>2</td>
<td>n</td>
</tr>
<tr>
<td>24-bit fast integer adder</td>
<td>1000</td>
<td>$n \log(n)$</td>
</tr>
<tr>
<td>24-bit integer multiplier</td>
<td>4000</td>
<td>n^2</td>
</tr>
<tr>
<td>32-bit IEEE adder</td>
<td>4000</td>
<td></td>
</tr>
<tr>
<td>32-bit IEEE multiplier</td>
<td>5000</td>
<td></td>
</tr>
<tr>
<td>Microprocessor core</td>
<td>~50000</td>
<td></td>
</tr>
</tbody>
</table>

** Multi-port register is wire limited

Data courtesy of John Montrym, NVIDIA
GPU vs. CPU

GPU performance compounding at over 2x per year
- Reference: Introduction slides
CPU’s performance compounding at ~1.5x per year

Why is this?

http://www-vlsi.stanford.edu/group/chips_micropro.html