Participating Media & Vol. Scattering

Applications
- Clouds, smoke, water, ...
- Subsurface scattering: paint, skin, ...
- Scientific/medical visualization: CT, MRI, ...

Topics
- Absorption and emission
- Scattering and phase functions
- Volume rendering equation
- Homogeneous media
- Ray tracing volumes

Absorption

\[dL(x, \omega) = -\sigma_a(x)L(x, \omega) \, ds \]

Absorption cross-section: \(\sigma_a(x) \)

Probability of being absorbed per unit length
Transmittance

\[dL(x, \omega) = -\sigma_a(x) L(x, \omega) \, ds \]
\[\frac{dL(x, \omega)}{L(x, \omega)} = -\sigma_a(x) \, ds \]
\[\ln L(x + s \omega, \omega) = - \int_0^s \sigma_a(x + s' \omega) \, ds' = -\tau(s) \]

Optical distance or depth

\[\tau(s) = \int_0^s \sigma_a(x + s' \omega) \, ds' \]

Homogenous media: constant \(\sigma_a \)

\[\sigma_a \rightarrow \tau(s) = \sigma_a s \]

Transmittance and Opacity

\[dL(x, \omega) = -\sigma_a(x) L(x, \omega) \, ds \]
\[\frac{dL(x, \omega)}{L(x, \omega)} = -\sigma_a(x) \, ds \]
\[\ln L(x + s \omega, \omega) = - \int_0^s \sigma_a(x + s' \omega) \, ds' = -\tau(s) \]
\[L(x + s \omega, \omega) = e^{-\tau(s)} L(x, \omega) = T(s) L(x, \omega) \]

Transmittance

\[T(s) = e^{-\tau(s)} \]

Opacity

\[\alpha(s) = 1 - T(s) \]
Out-Scatter

\[L(x, \omega) \xrightarrow{\sigma_i(x)} L + dL \]

\[dL(x, \omega) = -\sigma_s(x)L(x, \omega)\, ds \]

Scattering cross-section: \(\sigma_s \)

Probability of being scattered per unit length

Extinction

\[L(x, \omega) \xrightarrow{\sigma_i(x)} L + dL \]

\[dL(x, \omega) = -\sigma_s(x)L(x, \omega)\, ds \]

Total cross-section
\[\sigma_t = \sigma_a + \sigma_s \]

Albedo
\[W = \frac{\sigma_s}{\sigma_t} = \frac{\sigma_s}{\sigma_a + \sigma_s} \]

Attenuation due to both absorption and scattering
\[\tau(s) = \int_0^s \sigma_t(x + s' \omega)\, ds' \]
Black Clouds

From Greenler, Rainbows, halos and glories

In-Scatter

\[L(x, \omega) \xrightarrow{\sigma_s(x)} L + dL \]

\[S(x, \omega) = \sigma_s(x) \int_{S^2} p(\omega' \rightarrow \omega) L(x, \omega') d\omega' \]

Phase function \[p(\omega' \rightarrow \omega) \]

Reciprocity \[p(\omega \rightarrow \omega') = p(\omega' \rightarrow \omega) \]

Energy conserving \[\int_{S^2} p(\omega' \rightarrow \omega) d\omega' = 1 \]
Phase Functions

Phase angle \(\cos \theta = \omega \cdot \omega' \)

Phase functions
(from the phase of the moon)

1. Isotropic
 - simple
 \[p(\cos \theta) = \frac{1}{4\pi} \]
2. Rayleigh
 - molecules
 \[p(\cos \theta) = \frac{3}{4} \frac{1 + \cos^2 \theta}{\lambda^4} \]
3. Mie scattering
 - small spheres
 ... Huge literature ...

Blue Sky = Red Sunset

From Greenler, Rainbows, halos and glories
Coronas and Halos

Moon Corona Sun Halos

From Greenler, Rainbows, halos and glories

Henyey-Greenstein Phase Function

Empirical phase function

\[
p(\cos \theta) = \frac{1}{4\pi} \frac{1 - g^2}{\left(1 + g^2 - 2g \cos \theta\right)^{3/2}}
\]

\[
2\pi \int_0^{\pi} p(\cos \theta) \cos \theta \, d\theta = g
\]

\(g \): average phase angle

\(g = -0.3 \)

\(g = 0.6 \)
The Volume Rendering Equation

Integro-differential equation
\[\frac{\partial L(x, \omega)}{\partial s} = -\sigma_t(x)L(x, \omega) + S(x, \omega) \]

Integro-integral equation
\[L(x, \omega) = \int_0^{\infty} S(x + s' \omega) ds' \]

Attenuation: Absorption and scattering
Source: Scatter (+ emission)

Simple Atmosphere Model

Assumptions
- Homogenous media
- Constant source term (airlight)

\[\frac{\partial L(s)}{\partial s} = -\sigma_t L(s) + S \]
\[L(s) = \left(1 - e^{-\sigma_c s} \right) S + e^{-\sigma_c} C \]

Fog
Haze
The Sky

From Greenler, Rainbows, halos and glories

Atmospheric Perspective

From Greenler, Rainbows, halos and glories
Atmospheric Perspective

Aerial Perspective: loss of contrast and change in color

From Musgrave

Semi-Infinite Homogenous Media

Reduced Intensity

\[L(z, \omega_i) = e^{-\tau(z, \omega_i)} L(0, \omega_i) \]

Effective source term

\[S(z, \omega_o) = \sigma_s p(\omega_i \rightarrow \omega_o) e^{-\tau(z, \omega_o)} L(0, \omega_i) \]

Volume rendering equation

\[\cos \theta_o \frac{\partial L(z, \omega_o)}{\partial z} = -\sigma_s L(z, \omega_o) + S(z, \omega_o) \]

Integrating over depths

\[\cos \theta_o L(\omega_o) = \int_0^\infty e^{-\sigma z \cos \theta} \sigma_s p(\omega_i, \omega_o) e^{-\sigma z \cos \theta} L(\omega_i) \, dz \]
Semi-Infinite Homogenous Media

Integrating over depths

\[
\cos \theta_i L(\omega_o) = \int_0^\infty e^{-\sigma_z \cos \theta_i} \sigma_i p(\omega_i, \omega_o) e^{-\sigma_z \cos \theta_o} L(\omega_i) \, dz
\]

\[
= \sigma_i p(\omega_i, \omega_o) L(\omega_i) \int_0^\infty e^{-\sigma_i z} \left(\frac{1}{\cos \theta_i} + \frac{1}{\cos \theta_o} \right) \, dz
\]

\[
= \sigma_i p(\omega_i, \omega_o) L(\omega_i) \frac{1}{\cos \theta_i + \cos \theta_o}
\]

\[
= W \, p(\omega_i, \omega_o) \frac{\cos \theta_i \cos \theta_o}{\cos \theta_i + \cos \theta_o}
\]

Semi-Infinite Homogenous Media

BRDF

\[
f_r(\omega_i, \omega_o) = \frac{dL}{dE} = \frac{L(\omega_i, \omega_o)}{L(\omega_i) \cos \theta_i}
\]

\[
= W \, p(\omega_i, \omega_o) \frac{1}{\cos \theta_i + \cos \theta_o}
\]

Seeliger’s Law or The Law of Diffuse Reflection
Subsurface Scattering

Skin

Volume Representations

3D arrays (uniform rectangular)
- CT data

3D meshes
- CFD, mechanical simulation

Simple shapes with solid texture
- Ellipsoidal clouds with sum-of-sines densities
- Hypertexture
Scalar Volumes

Interpolation \[v(s_i) = \text{trilinear}(v,i,j,k,x(s_i)) \]

Map scalars to optical properties \(\sigma_r(v), \sigma_a(v) \)

Scalar Volumes

Scatter

\[S(x(s), \omega) = \sigma_z(s) \ p(\omega, \omega(x(s), x_L)) \ L_z(x_L, \omega(x_L, x(s))) \]

\((i, j, k) \)

Voxel
Ray Marching

Primary ray

\[T = 1 \]
\[L = 0 \]

for \(s = 0; s < 1; s+ = ds \)

\[S = \sigma_s(s) p(\omega, \omega(x(s)), x_L) L_s(x_L, \omega(x_L, x(s))) \]
\[L = L + TS\Delta s \]
\[T = T \left[1 - \sigma_s(x(s)) \right] \Delta s \]

Ray Marching

Shadow ray

\[T = 1 \]

for \(t = 0; t < 1; t+ = dt \)

\[T = T \left[1 - \sigma_t(x(t)) \right] \Delta t \]
\[S(x(s)) = \sigma_t(s) p(\omega, \omega(x(s)), x_L) TL_s(x_L, \omega(x_L, x(s))) \]
Beams of Light

From Greenler, Rainbows, halos and glories

From Minneart, Color and light in the open air

Color and Opacity Volumes

M. Levoy, Ray tracing volume densities

\[C(i,j,k) \Rightarrow (R,G,B) \]

\[A(i,j,k) \]

\[c(i,j,k) = \]

\[(C(i,j,k)^* A(i,j,k), A(i,j,k)) \]

\[c(x(s_j)) = \text{trilinear}(c,i,j,k,x(s_j)) \]
Ray Marching

\[C = (0, 0, 0, 0) \]
\[\text{for} (s = 0; s < 1; s+ = ds) \]
\[C = C + (1 - \alpha(C))c(s) \]

Volume Rendering Examples

From Karl Heinz Hoehne

From Marc Levoy

© 1995 DML University of Hamburg, Germany