Monte Carlo IV:
The Rendering Equation (Continued)
Overview

• Irradiance caching
 • Another biased MC method
• Metropolis sampling
 • Generating samples from arbitrary functions
• Metropolis light transport
Irradiance Caching

• Separate out indirect illumination from direct

• Assumptions:
 • It changes relatively slowly
 • Directional distribution is relatively unimportant

• Approach:
 • Compute indirect illumination at sparse set of points, interpolate it to use at nearby points

• Advantages:
 • Low memory, efficient,...
Irradiance Caching

• Definition of irradiance

\[E(x) = \int_{\Omega} L_i(x, \omega) \cos \theta_i d\omega \]

• Estimate this integral with standard MC techniques
Irradiance Caching

- Estimate irradiance from nearby samples
- For Lambertian surface,
 \[f_r(\omega_i \rightarrow \omega_o) = c \]
- Rendering equation:
 \[
 L(x, \omega) = L_e(x, \omega) + \int_{\Omega} f(\omega_i \rightarrow \omega) L_i(x, \omega_i) \cos \theta_i \, d\omega_i \\
 = L_e(x, \omega) + c \times E(x)
 \]
Irradiance Caching

• What if surface isn’t Lambertian?
• Two possible approaches:
 • Use irradiance estimate for Lambertian component of BSDF, handle the rest with different technique
 • Assume that incident radiance is same from all directions

\[L(x, \omega) = \frac{E(x)}{\pi} \]

• Error depends on specularity of BRDF, variation in illumination...
Irradiance Caching

• When is re-use error prone?
 • Sample is from far away
 • N is substantially different
 • Nearby objects

• Better interpolation
 • Ward & Heckbert: Irradiance gradients

• Other compact representations of incident radiance?
 • If more directional variation can be preserved, can be applied to directionally-varying BRDFs
Examples

- Under-sampled irradiance caching vs under-sampled path tracing

![Example Image 1](image1)

![Example Image 2](image2)