
Tomas Mőller © 2000

Speeding up your gameSpeeding up your game
The scene graph
Culling techniques
Level-of-detail rendering (LODs)
Collision detection
Resources and pointers

(adapted by Marc Levoy from a lecture by Tomas Möller,
using material from Real-Time Rendering)

Tomas Mőller © 2000

The scene graphThe scene graph
DAG – directed acyclic graph
– Simply an n-ary tree without loops

leaves contains geometry
each node holds a
– bounding volume (BV)
– pointers to children
– possibly a transform

examples of BVs: spheres, boxes
the BV in a node encloses all the
geometry of the nodes in its subtree

internal node =

Tomas Mőller © 2000

Scene graph exampleScene graph example
circles=BVs

scene graph

root

Tomas Mőller © 2000

Using transforms for instancingUsing transforms for instancing……
put transform in internal node(s)

Move right,
Rotate 45°Move up

Tomas Mőller © 2000

……or hierarchical animationsor hierarchical animations
A B CNo hierarchy:

one transform

21 3
Hierarchy:3 transforms

Leg

Xform

Xform

Xform
Knee

Foot

Hip

Xform

Tomas Mőller © 2000

Types of cullingTypes of culling
backface culling
hierarchical view-frustum culling
portal culling
detail culling
occlusion culling

Tomas Mőller © 2000

BackfaceBackface cullingculling
often implemented for you in the API
OpenGL: glCullFace(GL_BACK);
requires consistently oriented polygons

screen space

1

0

2

front

0
1

2

back

front

back
eye

eye space

Tomas Mőller © 2000

(Hierarchical) view frustum culling(Hierarchical) view frustum culling
root

camera

Tomas Mőller © 2000

VariantsVariants
octree
BSP tree
– axis-aligned
– polygon-aligned (like Fuchs’s algorithm)

if a splitting plane is outside the frustum,
one of its two subtrees can be culled

Tomas Mőller © 2000

Portal cullingPortal culling
plan view of architectural environment
circles are objects to be rendered

Tomas Mőller © 2000

Simple algorithm Simple algorithm ((LuebkeLuebke and Georges and Georges ‘‘95)95)

create graph of environment (e.g. building)
– nodes represent cells (e.g. rooms)
– edges represent portals between cells (doors)

for each frame:
– V cell containing viewer, P screen bbox
– * render V’s contents, culling to frustum through P
– V a neighbor of V (through a portal)
– project portal onto screen, intersect bbox with P

if empty intersection, then V is invisible from viewer, return
if non-empty, P intersection, recursively call *

Tomas Mőller © 2000

ExampleExample
Images courtesy of David P. Luebke and Chris Georges

typical speedups: 2x - 100x

Tomas Mőller © 2000

VariantsVariants
stop recursion when cell is too far away
stop recursion when out of time
compute potentially visible set (PVS)
– viewpoint-independent pre-process
– which objects in V2 might be visible from V1?
– only meaningful if V1 and V2 are not adjacent
– easy to be conservative; hard to be optimal

V1 V2

Tomas Mőller © 2000

Detail cullingDetail culling

detail culling OFF

cull object if projected BV occupies less than N pixels
not much visible difference here, but 1x - 4x faster
especially useful when moving

detail culling ON

Images courtesy of ABB Robotics Products, created by Ulf Assarsson

Tomas Mőller © 2000

Estimating projected areaEstimating projected area

distance in direction d is d ∏ (c-v)
projected radius p is roughly (n r) / (d ∏ (c-v))
projected area is p2

(eye) v

(near plane) n

d (normalized view direction)

r

c

Tomas Mőller © 2000

Occlusion cullingOcclusion culling

main idea: objects that
lie completely “behind”
another set of objects
can be culled

“portal culling” is a
special case of
occlusion culling

Tomas Mőller © 2000

Sample occlusion culling algorithmSample occlusion culling algorithm
draw scene from front to back
maintain an “occlusion horizon” (yellow)

Tomas Mőller © 2000

Sample occlusion culling algorithmSample occlusion culling algorithm
to process tetrahedron
(which is behind grey objects):
– find axis-aligned box of projection
– compare against occlusion horizon

culled

Tomas Mőller © 2000

Sample occlusion culling algorithmSample occlusion culling algorithm
when an object is partially visible:
– add its bounding box to the occlusion horizon

Tomas Mőller © 2000

Hierarchical ZHierarchical Z--buffer algorithmbuffer algorithm
(Greene,(Greene, KassKass, and Miller 1993), and Miller 1993)

octree in object space
+

multiresolution Z-buffer in screen space

used in both NVIDIA and ATI chips

Tomas Mőller © 2000

ObjectObject--spacespace octreeoctree
(shown using(shown using quadtreequadtree))

Images from Ned Greene

Tomas Mőller © 2000

ObjectObject--space space octreeoctree
(shown using (shown using quadtreequadtree))

Tomas Mőller © 2000

ObjectObject--spacespace octreeoctree
(shown using(shown using quadtreequadtree))

Tomas Mőller © 2000

ObjectObject--spacespace octreeoctree
(shown using(shown using quadtreequadtree))

Tomas Mőller © 2000

ObjectObject--spacespace octreeoctree
(shown using(shown using quadtreequadtree))

Tomas Mőller © 2000

ObjectObject--spacespace octreeoctree
(shown using(shown using quadtreequadtree))

Tomas Mőller © 2000

ObjectObject--spacespace octreeoctree
(shown using(shown using quadtreequadtree))

Tomas Mőller © 2000

Hierarchical ZHierarchical Z--bufferbuffer

reduce cost of Z-testing
large polygons
maintain low-res versions
of Z-Buffer

Tomas Mőller © 2000

LevelLevel--ofof--detail renderingdetail rendering
use different levels of detail at different
distances from the viewer

Tomas Mőller © 2000

LevelLevel--ofof--detail renderingdetail rendering
not much visual difference, but a lot faster

use area of projection of BV to select
appropriate LOD

Tomas Mőller © 2000

Collision detectionCollision detection
cannot test every pair of triangles: O(n2)
use BVs because these are cheap to test
better: use a hierarchical scene graph

Tomas Mőller © 2000

Testing for collision betweenTesting for collision between
two scene graphstwo scene graphs

start with the roots of the two scene graphs
testing for collision between the bounding
volumes of two internal nodes
– if no overlap, then exit
– if overlap, then descend into the children of the internal

node with largest volume

an internal node against a triangle
– descend into the internal node

a triangle against a triangle
– test for interpenetration

Tomas Mőller © 2000

Triangle Triangle -- triangle collision testtriangle collision test
compute the line of intersection between
the supporting planes of the two triangles

compute the intersection interval
between this line and the two triangles
– gives two intervals

if the two intervals overlap,
then the two triangles interpenetrate!

Tomas Mőller © 2000

Simpler collision detectionSimpler collision detection
only shoot rays to find collisions, i.e.,
approximate an object with a set of rays
cheaper, but less accurate

Tomas Mőller © 2000

Can you compute the time of a Can you compute the time of a
collision?collision?

move ball, test for hit, move ball, test for
hit… can get “quantum effects”!
in some cases it’s possible to find closed-
form expression: t = s / v

v

s

Tomas Mőller © 2000

Resources and pointersResources and pointers
Real Time Rendering (the book)
– http://www.realtimerendering.com

Journal of Graphics Tools
– http://www.acm.org/jgt/

